HUN-REN-BME Research Group

Development of high performance ductile hybrid composites

Project ID:
OTKA K116070
Supported by:
Hungarian National Research, Development and Innovation Office (NKFIH)
1 September 2015 - 31 August 2019
Supervisor (BME):
Prof. Dr. Tibor Czigány
Dr. Gergely Czél
Participant researchers (BME):
Dr. Gábor Romhány
Dr. László Mészáros
Dr. Kolos Molnár
Prof. Dr. h.c. mult. József Karger-Kocsis
Dr. Dániel Gere
Norbert András Forintos
Dr. Gergely Hegedűs

Project summary

One of the biggest challenges for the 21st century’s transportation sector in line with the strategic aims of the EU is to improve fuel economy and reduce emissions, which may be done by reduction of the gross weight of vehicles. The development of the next generation of economic and environmentally friendly vehicles requires high strength and low weight components. So-called composite materials consisting of fibres and plastic resins offer high strength but usually fail in a catastrophic manner without sufficient warning. This unsafe failure character renders them unsuitable for several applications where loads are unpredictable and sudden failure cannot be tolerated. Our research programme aims at developing a new generation of composites featuring safe, gradual failure, with significant margin between a detectable warning and final failure. Our approach is to mix (hybridise) fibre types and design the layered architecture of our new materials to mimic the safe ductile failure of metals. Our previous success in developing hybrid composites showing ductility in one direction encourages us to develop more advanced types which can be loaded in any directions. Our new materials could potentially offer a notable increase in the scope of composite applications including transportation and construction sectors. A significant shift in the conservative design limits leading to lower component weights and therefore operational cost savings could potentially take place as well due to safer failure character of the new ductile composites.

Project results

Section 1
1 September 2015 - 31 August 2016
A variety of new unidirectional thin-ply carbon/glass-epoxy hybrid laminates made of different grade carbon and high strength S-glass fibres were fabricated and characterised in tension and the ductility parameters of the tested materials were compared. The key trade-off in the properties of ductile hybrids was found between their yield stress and ductile strain. Strong correlation was found between the initial modulus and the ductile strain of the tested hybrid materials, which follows the similar correlation between the elastic modulus and the failure strain of different grade carbon fibres. Thicker unidirectional glass/carbon-epoxy hybrid specimens were also fabricated and the compressive damage and failure mechanisms of three layer glass/thin carbon hybrid blocks were investigated in four point bending test setup. The new test setup was developed to allow for damage and failure type observations, which are extremely challenging in case of the conventional direct compression test setup where the specimens typically fail catastrophically. A new failure mechanism was observed which has not been reported in the international scientific literature yet: Some of the investigated thin carbon/epoxy prepregs (i.e. the high and ultra-high modulus ones) have shown stable fragmentation distributed within the volume of the layer. This type of failure has only been shown under tensile loading so far. The new observations suggests, that it may be possible to exploit the fragmentation as a key ductility mechanism in compression as well as tension dominated load scenarios and in the variety of corresponding applications. During the test programme of several unidirectional ply-by-ply hybrid configurations comprising a variety of glass/carbon-epoxy prepregs a deep insight was taken into the factors and mechanisms affecting the so-called hybrid effect in tension. High quality, consistent test data and good correlation to accurate models were presented.
Fragmentation of high modulus (HM) and ultra-high modulus carbon layers in hybrid specimens under compression

Section 2
1 September 2016 - 31 August 2017
The tensile response of unidirectional carbon/carbon hybrid specimen types comprising ultra-high modulus (UHM), high modulus (HM), and intermediate modulus (IM) carbon/epoxy layers were investigated in preparation for the more complicated multi-directional carbon/carbon hybrid laminate design. Favourable pseudo-ductile failure behaviour with linear-plateau-linear style stress-strain responses was demonstrated with progressive damage accumulation due to low strain material fragmentation and stable delamination instead of sudden, catastrophic fracture typical of conventional unidirectional composites. All five material combinations exhibited exceptionally high initial moduli and a wide stress plateau with further increase in stress both of which can be exploited as a warning of accumulating damage before final failure. Multi-directional interlayer hybrid composites of ultra-high modulus (UHM) and intermediate modulus (IM) carbon/epoxy were designed and characterised both under un-notched and notched conditions. The motivation for this key task was to trigger a break-through in the exploitation of the ductility mechanisms demonstrated in our unidirectional hybrid composites, as multi-directional pseudo-ductile laminates can be suitable for a wide range of applications not being limited to uniaxial load scenarios. The selection of constituent materials was based on the results of the previous studies of unidirectional configurations. Both tested un-notched configurations with different constituents (3 layer hybrid sublaminates) and the same lay-up sequence: [45/90/-45/0]s exhibited favourable linear-plateau style pseudo-ductile failure mode due to fragmentation of the low strain material in the 0° hybrid sublaminate. Reduced notch sensitivity similar to the ductile net-section behaviour of metals was achieved in both hybrid laminates due to local damage and induced load re-distribution around the notches, for both open holes and sharp notches.
X-ray computed tomography image showing local damage next to the notch in a pseudo-ductile multidirectional hybrid laminate

Section 3
1 September 2017 - 31 August 2018
The efforts to characterise the new pseudo-ductile interlayer hybrid materials under compressive loading was continued with direct compression tests of glass-carbon hybrid specimens with different carbon fibres and different carbon-to-glass ratios. Favourable pseudo-ductility was obtained in compression for the lower carbon-glass ratios with high modulus carbon fibres. This is a very important result which demonstrates that the new materials are suitable for reversed loading, not just tension. The effect of different environmental conditions on the mechanical properties is a key topic when it comes to introducing new materials to safety-critical applications. Therefore the team initiated a comprehensive test campaign to characterise the new pseudo-ductile glass/carbon interlayer hybrid composites at different temperatures (-50, 25 and 120°C) and to explore the effect of moisture on the failure strain and ductility of the materials. It was found that the temperature has minor effect on the fibre fragmentation driven pseudo-yield strain of the hybrids, however up to 60% difference was observed in the mode II interlaminar fracture toughness values measured at the two extreme temperatures. This proves that the effect of temperature on the ply fragmentation mechanism is negligible, but the material is sensitive to the change of interlaminar toughness with temperature, which has to be considered during the component design phase. Preliminary results of the moisture sensitivity study indicated that long-term immersion of the specimens in 60°C deionised water has detrimental effect to the strength of the specimens, therefore a less aggressive ageing procedure was implemented at 60°C with 90% relative humidity.
Test arrangement at -50 Celsius with video-extensometer

Section 4
1 September 2018 - 31 December 2019
An experimental campaign was completed to assess the visual strain overload indicating capability of carbon/glass hybrid composites due to the translucent glass layer which can reveal carbon layer fractures and interfacial damage. The results demonstrated that it is possible to use a retrofitted thin sensor patch of about 10x50 mm to indicate if a component (eg. a flat carbon/epoxy composite rod) was deformed beyond a pre-defined strain in tension. The key design parameters and the most important factors affecting the accuracy of the sensors were identified. The technology was demonstrated on a bike handlebar. The previously demonstrated hybrid composite visual overload sensor was also applied at a larger scale not only as a retrofitted patch on tensile test specimens but as a multifunctional structural sensing layer on a 600x300 mm pseudo-ductile sandwich panel as well as on a full-scale longboard (up to 1 m long). These components are large enough to represent small-scale feasibility studies with realistic load scenarios. The structural sensing layer of the sandwich panel successfully gave warning of bending overload (see figure) at the beginning of a benign, progressive damage accumulation process well before the final failure of the sandwich beam specimens. The feasibility studies demonstrated that the developed materials and overload sensing technology can be applied to safety-critical components of medium size.
Multi-functional structural and sensing layer after overload

Project-related publications

  1. Czél G. , Bugár-Mészáros M., Wisnom M. R.: Combined effect of moisture and test temperature on the pseudo-ductility of thin-ply carbon/epoxy-glass/epoxy hybrid composites. Composites Part A (Applied Science and Manufacturing), 165, 107353/1-107353/11 (2023) 10.1016/j.compositesa.2022.107353 IF=8.7 Q1
  2. Petrény R., Mészáros L.: Moisture dependent tensile and creep behaviour of multi-wall carbon nanotube and carbon fibre reinforced, injection moulded polyamide 6 matrix multi-scale composites. Journal of Materials Research and Technology, 16, 689-699 (2022) 10.1016/j.jmrt.2021.12.030 IF=6.4 D1
  3. Hegedűs G., Sarkadi T., Czigány T.: Self-sensing composite: Reinforcing fiberglass bundle for damage detection. Composites Part A (Applied Science and Manufacturing), 131, 105804/1-105804/7 (2020) 10.1016/j.compositesa.2020.105804 IF=7.664 D1
  4. Hegedűs G., Czigány T.: State monitoring of polymer composites with glass optical fibre and with equipment used in telecommunication. Acta Materialia Transylvanica, 3, 1-9 (2020) 10.33924/amt-2020-01-01
  5. Forintos N., Czigány T.: Reinforcing carbon fibers as sensors: The effect of temperature and humidity. Composites Part A (Applied Science and Manufacturing), 131, 105819/1-105819/5 (2020) 10.1016/j.compositesa.2020.105819 IF=7.664 D1
  6. Mészáros L., Kara Y., Fekete T., Molnár K.: Development of self-reinforced low-density polyethylene using γ-irradiation cross-linked polyethylene fibres. Radiation Physics and Chemistry, 170, 108655/1-108655/6 (2020) 10.1016/j.radphyschem.2019.108655 IF=2.858 D1
  7. Vermes B., Czigány T.: Non-conventional deformations: Materials and actuation. Materials, 13, 1383/1-1383/26 (2020) 10.3390/ma13061383 IF=3.623 Q1
  8. Vas L. M., Kocsis Z., Czigány T., Tamás P., Romhány G.: Novel evaluation method of acoustic emission data based on statistical fiber bundle cells. Journal of Composite Materials, 53, 2429-2446 (2019) 10.1177/0021998319826666 IF=1.972 Q3
  9. Toldy A., Szebényi G., Molnár K., Tóth L. F., Magyar B., Hliva V., Czigány T., Szolnoki B.: The effect of multilevel carbon reinforcements on the fire performance, conductivity, and mechanical properties of epoxy composites. Polymers, 11(2), 303/1-303/13 (2019) 10.3390/polym11020303 IF=3.426 Q1
  10. Hegedűs G., Sarkadi T., Czigány T.: Multifunctional composite: Reinforcing fibreglass bundle for deformation self-sensing. Composites Science and Technology, 180, 78-85 (2019) 10.1016/j.compscitech.2019.05.018 IF=7.094 D1
  11. Csallány E. K., Czél G.: Rendezett nem folytonos szálakkal erősített, nagy teljesítményű polimer kompozitok mechanikai tulajdonságai nyomó terhelés esetén. Polimerek, 5, 388-392 (2019)
  12. Tamás-Bényei P., Bitay E., Kishi H., Matsuda S., Czigány T.: Toughening of Epoxy Resin: The Effect of Water Jet Milling on Worn Tire Rubber Particles. Polymers, 11, 529/1-529/11 (2019) 10.3390/polym11030529 IF=3.426 Q1
  13. He H., Kara Y., Molnár K.: Effect of needle characteristic on fibrous PEO produced by electrospinning. Resolution and Discovery, 4, 7-11 (2019) 10.1556/2051.2018.00063
  14. Vermes B., Czigány T.: Layup optimization and ways to improve the manufacturability of coupled composites. in 'International Conference on Composite Materials (ICCM22) Melbourne, Australia. 2019.08.11-2019.08.16,7 (2019)
  15. Virág Á. D., Vas L. M., Bakonyi P., Halász M.: Analysing of the Yarn Pull-out Process for the Characterization of Reinforcing Woven Fabrics. Fibers and Polymers, 20, 1975-1982 (2019) 10.1007/s12221-019-8978-9 IF=1.797 Q1
  16. Hegedűs G., Czigány T.: Sérülés helyének megállapítása kompozit szerkezetekben az üveg erősítőanyag felhasználásával. in 'XXVII. Nemzetközi Gépészeti Konferencia OGÉT 2019 Nagyvárad. 2019.04.25-2019.04.28.,189-192 (2019)
  17. Molnár K.: Electrospinning setup analogous to a cone-plate rheometer. Materials Today Communications, 20, UNSP 10058/1-UNSP 10058/ (2019) 10.1016/j.mtcomm.2019.100589 IF=2.678 Q2
  18. Forintos N., Czigány T.: Multifunctional application of carbon fiber reinforced polymer composites: electrical properties of the reinforcing carbon fibers – a short review. Composites Part B (Engineering), 162, 331-343 (2019) 10.1016/j.compositesb.2018.10.098 IF=7.635 D1
  19. Suwarta P., Fotouhi M., Czel G., Longana M., Wisnom M. R.: Fatigue behaviour of pseudo-ductile unidirectional thin-ply carbon/epoxy-glass/epoxy hybrid composites. Composite Structures, 224, UNSP 11099/1-UNSP 11099/ (2019) 10.1016/j.compstruct.2019.110996 IF=5.138 D1
  20. Hegedűs G., Sarkadi T., Czigány T.: Self-sensing polymer composite: white-light-illuminated reinforcing fibreglass bundle for deformation monitoring. Sensors, 19, 1745/1-1745/8 (2019) 10.3390/s19071745 IF=3.275 Q1
  21. He H. J., Kara Y., Molnar K.: In Situ Viscosity-Controlled Electrospinning with a Low Threshold Voltage. Macromolecular Materials and Engineering, 304, 1900349/1-1900349/ (2019) 10.1002/mame.201900349 IF=3.853 Q1
  22. Rev T., Jalalvand M., Fuller J., Wisnom M. R., Czél G.: A simple and robust approach for visual overload indication - UD thin-ply hybrid composite sensors . Composites Part A (Applied Science and Manufacturing), 121, 376-385 (2019) 10.1016/j.compositesa.2019.03.005 IF=6.444 D1
  23. Wisnom M. R., Czél G., Fotouhi M., Fuller J., Jalalvand M., Rev T., Wu X.: Reduced tensile notch-sensitivity in pseudo-ductile thin-ply composites. in '18th European Conference on Composite materials, ECCM18 Athens, Greece. 2018.06.24-2018.06.28.,1-7 (2018)
  24. Fotouhi M., Suwarta P., Jalalvand M., Czel G., Wisnom M. R.: Acoustic Emission Monitoring of Thin Ply Hybrid Composites under Repeated Quasi-Static Tensile Loading. FME Transactions, 46, 238-244 (2018) 10.5937/fmet1802238F
  25. Haijun H., Cheng-Kun L., Molnár K.: A Novel Needleless Electrospinning System Using a Moving Conventional Yarn as the Spinneret. Fibers and Polymers, 19, 1472-1478 (2018) 10.1007/s12221-018-8183-2 IF=1.439 Q1
  26. Czél G., Rev T., Jalalvand M., Fotouhi M., Longana M. L., Nixon-Pearson O. J., Wisnom M. R.: Pseudo-ductility and reduced notch sensitivity in multi-directional all-carbon/epoxy thin-ply hybrid composites. Composites Part A (Applied Science and Manufacturing), 104, 151-164 (2018) 10.1016/j.compositesa.2017.10.028 IF=6.282 D1
  27. Czél G., Bugár-Mészáros M., Wisnom M. R.: The effect of test temperature on the pseudo-ductility of thin-ply hybrid composites. in '18th European Conference on Composite materials, ECCM18 Athens, Greece. 2018.06.24-2018.06.28.,1-8 (2018)
  28. Hegedűs G., Czigány T.: Developing a glass fibre sensor for polymer technology applications. IOP Conference Series: Materials Science and Engineering, 426, 012015/1-012015/1-4 (2018) 10.1088/1757-899X/426/1/012015
  29. Hegedűs G., Czigány T.: Analysis of the applicability of optical fibers as sensors for the structural health monitoring of polymer composites: the relationship between attenuation and the deformation of the fiber. Sensors and Actuators A: Physical, 272, 206-211 (2018) 10.1016/j.sna.2018.01.039 IF=2.739 Q2
  30. Petrény R., Mészáros L.: Poliamid 6 mátrixú hibridkompozitok kúszási jellemzői. Polimerek, 4, 192-196 (2018)
  31. Rév T., Czél G., Wisnom M. R.: A Novel Test Method to Induce Bi-axial Stress States in Thin-ply Carbon Composites Under Combined Longitudinal Tension and Transverse Compression. in 'American Society for Composites—Thirty-Third Technical Conference on Composite Materials Seattle, USA. 2018.09.24. - 2018.09.,9 (2018)
  32. Hegedűs G., Czigány T.: Polimer kompozit termékek komplexitását kihasználó üvegszálas érzékelő csatlakozójának fejlesztése. in 'OGÉT 2018: XXVI. Nemzetközi Gépészeti Konferencia Marosvásárhely, Románia. 2018.04.26-2018.04.29.,179-182 (2018)
  33. Vermes B., Czigány T.: Kompozitok alakváltásának lehetőségei. Gép, 69, 51-54 (2018)
  34. Suwarta P., Czél G., Fotouhi M., Rycerz J., Wisnom M. R.: Pseudo-ductility of Unidirectional Thin Ply Hybrid Composites in Longitudinal Compression. in 'American Society for Composites—Thirty-Third Technical Conference on Composite Materials Seattle, USA. 2018.09.24. - 2018.09.,10 (2018)
  35. Hegedűs G., Sarkadi T., Czigány T.: Analysis of the light transmission ability of reinforcing glass fibers used in polymer composites. Materials, 10(6), 637/1-9 (2017) 10.3390/ma10060637 IF=2.467 Q2
  36. Szebényi G., Magyar B., Iványicki T.: Comparison of static and fatigue interlaminar testing methods for continuous fiber reinforced polymer composites. Polymer Testing, 63, 307-313 (2017) 10.1016/j.polymertesting.2017.08.033 IF=2.247 Q2
  37. Czél G., Jalalvand M., Wisnom M. R., Czigány T.: Design and characterisation of high performance, pseudo-ductile all-carbon/epoxy unidirectional hybrid composites. Composites Part B (Engineering), 111, 348-356 (2017) 10.1016/j.compositesb.2016.11.049 IF=4.92 D1
  38. Péter B., Hegedűs G., Czigány T.: T-RTM eljárással gyártott alkatrészek gyártási folyamatának kihívásai, különös tekintettel az erősítőanyagok kezelésére. Gép, 68, 37-42 (2017)
  39. Szebényi G., Czigány T., Magyar B., Karger-Kocsis J.: 3D printing-assisted interphase engineering of polymer composites: Concept and feasibility. Express Polymer Letters, 11, 525-530 (2017) 10.3144/expresspolymlett.2017.50 IF=3.064 Q1
  40. Vermes B., Czigány T.: Development of microcapsules. Materials Science Forum, 885, 31-35 (2017) 10.4028/
  41. Molnár K., Czigány T.: High throughput nanofiber production by rotation-aided needleless electrospinning. in 'ICCM21 Xi'an, Kína. 2017.08.20-2017.08.25.,7 (2017)
  42. Szebényi G., Tóth L. F., Karger-Kocsis J.: Effect of an Ionic Liquid on the Flexural and Fracture Mechanical Properties of EP/MWCNT Nanocomposites. Materials Science Forum, 885, 19-24 (2017) 10.4028/
  43. Forintos N., Czigány T.: Üvegszál erősítésű kompozitok deformációjának mérése szénszálak segítségével. in 'OGÉT 2017: XXV. Nemzetközi Gépészeti Konferencia Kolozsvár, Románia. 2017.04.27-2017.04.30.,147-150 (2017)
  44. Hegedűs G., Czigány T.: Optikai szálak alkalmazása polimer anyagvizsgálatokhoz. in 'OGÉT 2017: XXV. Nemzetközi Gépészeti Konferencia Kolozsvár, Románia. 2017.04.27-2017.04.30.,175-178 (2017)
  45. Vas L. M., Kling S., Czigány T., Czél G.: New method for determining the bending modulus of solid and hollow fibers from deflection tests. Textile Research Journal, 87, 542-551 (2017) 10.1177/0040517516632476 IF=1.54 Q1
  46. Romhány G., Czigány T., Karger-Kocsis J.: Failure Assessment and Evaluation of Damage Development and Crack Growth in Polymer Composites Via Localization of Acoustic Emission Events: A Review. Polymer Reviews, 57, 397-439 (2017) 10.1080/15583724.2017.1309663 IF=6.69 D1
  47. Czigány T., Forintos N., Hegedűs G.: Health monitoring of high-performance polymer composites with multifunctional fibers. in 'ICCM21 Xi'an, Kína. 2017.08.20-2017.08.25.,8 (2017)
  48. Wisnom M. R., Czél G., Swolfs Y., Jalalvand M., Gorbatikh L., Verpoest I.: Hybrid effects in thin ply carbon/glass unidirectional laminates: Accurate experimental determination and prediction. Composites Part A (Applied Science and Manufacturing), 88, 131-139 (2016) 10.1016/j.compositesa.2016.04.014 IF=4.075 D1
  49. Forintos N, Czigány T: Kompozitba épített elektromosan vezető érzékelő. Polimerek, 2, 196-199 (2016)
  50. Czél G., Jalalvand M., Wisnom M. R.: Design and characterisation of advanced pseudo-ductile unidirectional thin-ply carbon/epoxy-glass/epoxy hybrid composites. Composite Structures, 143, 362-370 (2016) 10.1016/j.compstruct.2016.02.010 IF=3.858 Q1
  51. Szebenyi G., Czigany T., Vermes B., Ye X. J., Rong M. Z., Zhang M. Q.: Acoustic emission study of the TDCB test of microcapsules filled self-healing polymer. Polymer Testing, 54, 134-138 (2016) 10.1016/j.polymertesting.2016.07.005 IF=2.464 Q1
  52. Forintos N, Czigány T: Polimer kompozitok állapotfelügyelete. in 'OGÉT 2016 Déva, Románia. 2016.04.21-2016.04.24.,130-133 (2016)
  53. Czél G., Jalalvand M., Wisnom M. R.: Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites. Composites Part A (Applied Science and Manufacturing), 91, 436-447 (2016) 10.1016/j.compositesa.2016.07.021 IF=4.075 D1
  54. Hegedűs G, Czigány T: Kompozit termékek állapotelemzési módszerei. Gép, 67, 98-103 (2016)
  55. Jalalvand M., Czél G., Fuller J. D., Wisnom M. R., Canal L. P., Gonzalez C. D., LLorca J.: Energy dissipation during delamination in composite materials - An experimental assessment of the cohesive law and the stress-strain field ahead of a crack tip. Composites Science and Technology, 134, 115-124 (2016) 10.1016/j.compscitech.2016.08.001 IF=4.873 D1

© 2014 BME Department of Polymer Engineering - Created by: Dr. Romhány Gábor