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Abstract 

Bending moduli of solid and hollow glass fibres were determined by means of fibre deflection 

tests. The test method was modified by measuring both the vertical and horizontal 

displacements of the end of the deflected fibre without increasing the number of tested fibres 

in order to reduce the high scatter of the conventional test results obtained by measuring only 

the vertical displacement. Upper and lower boundary curves of the fibre end displacements 

were determined to filter out the inaccurate measurements e.g. when the neutral line of the 

fibre is not a plane but a spatial curve. Mean and coefficient of variation of the fibre bending 

modulus were estimated from the recorded coordinates of the fibre ends applying two newly 

developed statistical evaluation methods based on the individual coordinates or on their 

average. After comparing several evaluation methods it was demonstrated that the individual 

coordinate based method provided the least relative error of the average. 

 

Keywords: glass fibre; deflection test; hollow fibre; bending modulus 

 

1. Introduction 

Increasing emphasis has been put recently on energy saving e.g. while travelling, transporting 

goods, or simply moving objects to save resources and reduce emissions [1]. Polymer matrix 

composite materials are suitable for energy efficient structures due to their high stiffness and 

strength combined with low density and their spread was steady in the recent decades [2]. 

Thermoset polymer composites typically consist of two constituents: fibres (e.g. glass, carbon, 

aramid) and matrix (e.g. epoxy, unsaturated polyester and other resins inc. bio-based ones 

[3]). The performance of composites can be improved either with advanced matrix materials 

including hybrid resins [4] or with novel fibre types. Most of the mechanical properties of 

well-designed composites are dominated by the fibre properties which therefore need to be 

determined accurately. Novel carbon nanotube based fibre materials [5] and fibre forming 
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techniques such as electrospinning [6]-[8] and special cross sections including hollow fibres 

are in focus for researchers to improve composite performance and to add various extra 

functions to the materials.  

Hucker et al. [9] used hollow glass fibres (HGF) to improve the compression strength of 

composite plates. The hollow fibres have higher bending stiffness than solid ones in the case 

of same linear density, which may be exploited similarly to the high area moment of inertia of 

sandwich structures. Hucker et al. fabricated HGFs with various diameters, and characterised 

them with the fibre hollow fraction K2 defined as the ratio of the inner di and outer do diameter 

of the fibres as in Equation (1).  
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Various UD composite specimens were tested in compression and it was highlighted that the 

elastic modulus of the composite decreased if the hollow fraction of the fibres was increased. 

A 10% increase in compressive strength was achieved with K2≈0.22. If the elastic modulus of 

the fibres had been measured e.g. by fibre deflection tests, the compressive response of the 

plates could have been estimated and analysed. Boniface et al. [10] reported that composite 

plates made of hollow fibres had beneficial energy absorption properties. Hucker et al. [11] 

fabricated their hollow fibres from glass tubes. The pre-form was heated up and stretched to 

low diameter hollow fibres which were tensile tested. Low fibre wall thickness and high 

stretching improved the modulus and strength of the fibres.  

Rosen et al. [12] investigated solid and hollow glass fibres and their composites and 

highlighted that the hollow glass fibre reinforced plastics (HGFRP) have better stiffness and 

compressive strength than those reinforced by solid fibres.  

Bayat and Aghdam [13] highlighted through finite element (FE) analysis that hollow fibres 

had better cooling conditions during manufacture than solid ones and therefore the 

detrimental residual stress in the fibre due to fast cooling was reduced. Another FE study 

indicated that the energy absorbing capacity of the composites can be increased with 

increased fibre hollow fractions. Besides their beneficial mechanical properties, hollow fibres 

can store healing or damage indicating fluids [14] alternatively to microcapsules [15]. 

Mechanical properties of fibres e.g. for composite reinforcements play a key role in most 

applications therefore fibre testing is crucial. ASTM standards D1388 and D5732 

(discontinued in 2008) propose bending stiffness measurement methods for textile samples by 

means of cantilever bending (Option A of ASTM D1388 and ASTM D5732) and loop 
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bending (Option B of ASTM D1388). Although these standard test methods apply to textile 

stripes, their principles are applicable to single fibres as well. The flexibility of single fibres 

can be measured by bending the fibre into a loop, where the smallest radius of curvature is 

measured before fracture of the fibre. A significant difficulty of this test method is the 

measurement of the curvature just before fracture [16], which may be done by post-processing 

a recorded video of the test. Another method utilises a cone to measure the curvature of the 

fibre loop at break. Tows of fibres are tensile tested in the textile industry with a knot to 

explore their flexibility. This test can be done on individual fibres as well. There is also a fibre 

test where two linked U shaped loops are bonded to paper tabs and pulled until fracture. The 

bending modulus of individual fibres can be determined from their deflection due to their own 

weight with a test similar to the cantilever test (option A of ASTM D1388 and ISO 

4604:2011) as shown on Figure 1. A fibre clamped horizontally at one end exhibits a 

deformed shape due to its own weight, and the vertical displacement (fB=-yB) of the other end 

can be recorded using a scale [17],[18]. The test methods based on deflection due to own 

weight can be divided into two categories: where a) the vertical displacement of the end of a 

given length (l0) fibre is recorded or b) the specimen length corresponding to a given chord 

angle (β) is recorded. Figure 1 shows the schematic of the fibre deflection test. Method a) has 

various evaluation processes, while method b) which is suitable for testing fabrics, cloths, and 

films, as well as fibres [19],[20] is usually executed using a Flexometer (ASTM D1388, 

D5732 and ISO 4604:2011). The horizontal displacement of the fibre end (ΔxB= l0-xB) is not 

used for evaluation of the deflection tests so far in the literature although it could improve the 

accuracy of the results. 
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Figure 1 Geometrical schematic of the fibre deflection test (fB=-yBand xB respectively are the vertical 

and horizontal displacements of the fibre end) 

 

The aim of this paper was to improve the accuracy of the fibre deflection test method by 

better exploitation of the test data without increasing the number of samples. The improved 

evaluation of the test method can result in reduced variability and better bending property 

estimation of the composites made of the tested fibres. 

 

2. Materials and methods 

The applied hollow fibres were supplied by R&G Faserverbundwerkstoffe GmbH (Germany) 

in the form of 216 g/m2 areal mass woven fabric by twill weave. The solid fibres were 

manufactured by 3B (Belgium), in the form of continuous tows. The compositions of the two 

glass fibre types are similar according to inductively coupled plasma optical emission 

spectrometry investigations. Fibre types of similar outer diameters were selected for the 

experiments.  

Before the deflection test the geometrical properties such as outer and inner diameters were 

measured on each individual fibre optically. The measured diameter data (mean and standard 

deviation) for hollow fibres were douter=13.411.32 m and dinner=6.101.21 m (K2=0.21) 

while that for solid fibres was d=13.770.73 m. Fibre deflection tests were performed on 

solid and hollow glass fibres of 50 mm length earlier and evaluated using only the vertical 

displacements of the fibre ends. Results of these tests were reported earlier in [18], [21] and 

[23]. The essence of this method is that a fibre is clamped horizontally at one end (Figure 1) 

and a vertical measuring scale is used to read the vertical displacement (fB=-yB) of the free 
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fibre end with 0.5 mm precision. More accurate results can be obtained if the horizontal 

displacement (xB) of the fibre end is measured by another scale as well. In order to 

demonstrate the applicability of this latter evaluation method, further deflection tests were 

performed on 10 solid and 10 hollow glass fibres. 

 

3. Results and discussion 

 

3.1. Previous results of vertical deflection measurements 

Determination of the Young’s modulus through tensile testing of high performance fibres 

such as glass, basalt, carbon or ceramic fibres may be difficult due to gripping problems 

(bending fragility, compression fragility of hollow fibres, obliquity, crimp, slippage from the 

grips). These may result in defective specimens and various systematic and statistical errors 

mainly compromising the accuracy of the elongation values essential for calculating the 

modulus. Fibre deflection tests were performed on 50 mm long fibres in [18], [23] and 

evaluated using only the vertical displacements of the fibres according to the calculation 

method published by Holden [22]. The results including the vertical displacement (yb) and the 

bending modulus (E) are visible in Table 1 [18], [23]. 

 

Fibre 

Number 

of 

tested 

samples  

Fibre end vertical displacement (yB) Bending modulus (E) 

Mean 

[mm] 

SD 

[mm] 
CV [%] 

MRE 

[%] 

Mean 

[GPa] 

SD 

[GPa] 
CV [%] 

MRE 

[%] 

Solid 60 23.21 5.49 24 6 74.48 26.34 35 9 

Hollow 100 17.08 6.10 36 7 98.99 55.72 56 11 

Table 1 Fibre deflection test results of solid and hollow glass fibres [18],[23] (SD, CV and 

MRE are the standard deviation, the coefficient of variation, and the relative error of the mean 

respectively.) 

 

The deflection tests of hollow fibres provided significantly higher values of mean modulus 

and coefficient of variation than those of the solid fibres. Some of the possible reasons for 

deviations and high scatter are inaccuracies of the measurement method, in diameter 

measurements, or in recording only the vertical displacements of the fibres. Another reason 

for the high scatter and the deviation in the mean values is the possible eccentricity of the 

hollow fibres which can result in the neutral axis of a deflected fibre not forming a plane 

curve as it is assumed for the evaluation. The out of test plane distance of the end point of 
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such an eccentric fibre can reduce its apparent vertical displacement, consequently increase 

the apparent elastic modulus calculated from the measurements. In order to eliminate the 

above mentioned problems, both the fibre deflection test method and the evaluation process 

were improved to enable more accurate determination of the fibre modulus based on the 

classical bending theory and measured values of both the vertical and horizontal 

displacements of the fibre end.  

 

3.2. Calculation of large fibre deflections 

The following conditions were assumed: the fibre is flexible (i.e. has a finite bending 

stiffness), has a circular cross section, the fibre diameter, d, is constant and small, the 

elongation of the fibre is negligible compared to its bending deflection and the effect of shear 

force is negligible. The material of the fibre is linearly elastic, and the equations of the classic 

bending theory can be applied (e.g. the deflected shape of the fibre is a plane curve and its 

cross sections remain planar).  

The deflection of the fibre due to its own weight is increasing if the free length of the fibre is 

increased, but the change in fibre length due to deflection is negligible. Therefore the arc 

length between two points of the deformed shape Δs always equals the original distance Δx0 

of the same points. According to the above assumptions, s=x0 during the calculation of 

bending moment along the fibre. Parameters of the deflected fibre shape and the schematic of 

the forces acting on an arc element are summarised in Figure 2. 

 

 

Figure 2 Schematic of the forces acting on an arc element of the deflected fibre (yB=y(lo))  
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The fixed length deflected shape of the fibre is most practical to describe along its length as a 

function of the arc length (distance along the fibre) s and the angle φ of the tangent at any 

point where x(s) and y(s) are the coordinates of a given point and w [N/mm] is the distributed 

load that is the specific fibre weight. The moment M(s) on an arc element can be estimated 

with lower and upper bounds according to Equation (2) based on inequality (3). 
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According to the basic assumptions detailed earlier, the classic bending theory is applied as in 

Equation (4): 

EI
R

EIM  1

 
(4) 

Where I is the second moment of inertia of the fibre cross section, which gives the bending 

stiffness IE together with the bending modulus E of the fibre, R is the radius of curvature, and 

κ=1/R=dφ/ds is the curvature. Equation (4) can be written in an integro-differential equation 

form, which yields Equation (5) after differentiation. 
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The second order non-linear differential Equation (5) cannot be solved analytically, therefore 

upper and lower bounds are determined first using inequality (2) and then numerical methods 

are applied for a more accurate solution. 

 

3.3. Boundary curves of the fibre end positions 

The upper bound of 1)(cos  s , part of inequality (3) is given first in Equation (6): 
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Therefore the differential inequality can be written as in Equation (7) 
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Integration of Equation (7) yields: 
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Integration constant C1 can be determined if we consider that the curvature is zero at the free 

end of the fibre at s= l0 as given in Equation (9): 

EI

wl
C

EI

wl
Cl oo

o 2
0

2
)(

2

1

2

1   (9) 

Equation (8) gives a negative curvature for the deflected fibre shape if C1 is substituted 

according to (10), which agrees with Figure 3.  
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Equation (10) indicates that the essence of the upper boundary estimation is that x0=s is also 

considered when calculating the moments. Moments, higher than the actual ones are therefore 

used which results in over-estimated absolute curvature values. In the case of cos=1 the 

expression of the elementary lever-arm in Equation (2) changes from cosds into ds hence 

this simplification results in a kind of uniformly distributed force system, where the forces 

acting on the arc elements point to the direction of the centre of curvature instead of being 

vertical. 

Equation (10) can be integrated, considering φ(0)=0 to obtain the tangent angle of the 

estimated fibre shape. The arranged form of Equation (11) shows that the angle of the tangent 

is always negative along the fibre (0≤s≤l0) which agrees with Figure 2. 
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The fibre length dependent Ω constant is one sixth of Holden’s k constant. The parametric 

equations of the fibre shape with 0≤t=s/l0≤1 can be calculated using φ(s) as given in (12).  

 
 





o

o

ls

o

s

ls

o

s

dttldsssx

dttldsssy

/

0

3

0

/

0

3

0

)1(1cos)(cos)(

)1(1sin)(sin)(

 (12) 

The lower boundary curve of the fibre deflection can be generated, if the curvature of the fibre 

is assumed to be zero all along its length i.e. the fibre remains straight and the fibre is rotated 
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around the fixed end which is transformed into a hinge. Consequently, the curve of fibre end-

point is a circular arc described by Equation (13): 
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where the end-point coordinates are xB=x(lo) and yB=y(lo) as indicated in Figures 1 and 2. 

All the experimental data points of the solid fibres fall between the boundary curves, but four 

of those of the hollow fibres (including two overlapping ones) falls outside the boundary for 

maximum curvature, probably due to measuring artefacts. These are excluded with the aid of 

the boundary curves to increase the accuracy of the remaining data points. A significant 

scatter is identified in the test data, therefore the accurate solution between the boundary 

curves is yet to be found for the correct determination of the average elastic modulus of the 

fibres. 

 

3.4. Exact solution using the fourth-order Runge-Kutta method  

The so-called fourth-order Runge-Kutta method [24] is an effective numerical tool for solving 

ordinary differential equations. It provides explicit solution applying recursive formulae for 

calculating the next value of ordinate from the weighted sum of four former ones and a finite 

abscissa increase. It is primarily used for first order differential equations and initial value 

problems, but it can be applied successfully to solve boundary value problems of higher order 

equations by using the so called shooting method based on iterations [24]. As the fourth-order 

Runge-Kutta method provides fourth-order accuracy (fifth-order error) the same fifth-order 

error definition was applied in calculations performed with Microsoft Excel. The normalised 

arc length interval of [0,1] was divided into 100 equal sections and the calculations were 

executed with a step size of Δt=0.01. Figure 3 shows the calculated coordinates of the fibre 

end-point as a function of parameter Ω. These curves correspond to those calculated by 

Holden [22]. 
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Figure 3 Normalised coordinates of the fibre end as a function of parameter Ω  

 

3.5. New evaluation method and test results 

The curves of Figure 3 can be considered as parametrised inverse functions from the test 

evaluation point of view since the measured values are the (xB= lo-xB, fB=-yB) displacement 

components of the fibre end-point and Ω is the parameter to be determined. The polynomial 

trends of the normally measured y and the previously not exploited x normalised coordinates 

of the fibre end-point were used to determine the Ω parameter explicitly with high coefficient 

of determination (R2≥0.9998). Equations (14) and (15) can directly be used for test evaluation 

determining Ω from the measured coordinates of the fibre end (yB<0, fB=-yB in Figures 1 and 

2). 
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In case of a Flexometer, the l0 fibre length belonging to a given β angle of the fibre chord 

(Figure 1) is measured and the parameter  containing l0 according to Equation (11) can be 

estimated with a second order polynomial as a function of tan=-yB/xB with a good agreement 

(R2≈1) as follows. 

 

( )  tan.+tan.=/ 2919124460
2

xy  (16) 
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Figure 4 shows the measured coordinates of the fibre end-point, the boundary curves 

according to Equations (12) and (13) as well as the fibre-end curve determined with the 

fourth-order Runge-Kutta method that runs in the middle of the area between the boundary 

curves. 

  

Figure 4 Measured coordinates of fibre end-points, boundary curves, and the fibre-end curve 

determined with the Runge-Kutta method 

 

The end-point curve generated by using the Runge-Kutta method, can be described with a 

simple second order polynomial with excellent fit (R2=0.9999) where the independent 

variable is a square root type expression given by: 
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Figure 5 shows this simple description graphically, where the measured positions of the fibre 

end-points are also marked.  
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Figure 5 Fibre end-point curve after transforming the independent variable  

 

As usual in the literature measuring a single value such as coordinate y or x or angle  the 

parameter  can be calculated with Equation (14) or (15) or (16), respectively, while 

measuring e.g. end-point coordinates yB and xB simultaneously provides two estimations for  

by using Equations (14) and (15). These two latter differ because of errors in the 

measurements (in the fibre length, end-point position, fibre diameter and roundness) and 

possible material in-homogeneities (in e.g. elastic modulus or density). Hence due to 

measuring errors and in-homogeneities the measured points scatter around the theoretical end-

point curve (points marked with ‘’ in Figure 6) or moreover they may gather around deviated 

curves above or below the right curve (points marked by ‘x’ or ‘o’ in Figure 6). The possible 

positions of the measured end-point sets are depicted in Figure 6. It is also true for the average 

points of these possible end-point sets (marked by red and blue ‘O’ in Figure 6) that are 

determined by the mean values of the measured end-point coordinates. (For the sake of 

simpler illustration in Figure 6 the intersection points of the coordinate lines of the red and 

blue average points are equal to those created by these coordinate lines and the theoretical 

end-point curve) 
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Figure 6 Three possible positions of the measured end-point sets (x, *, o) and their average points (red, 

cyan, and blue O) and intersection points (black O) of the theoretical end-point curve and the 

coordinate lines of average points red and blue  

 

The estimated values of the Ω parameter from both coordinates are consistent with each other 

only if the measured points scatter along the correct curve. If the end-points evaluated from x 

and y coordinates aggregate around separate points away from the correct curve, they yield 

different Ω for x and y coordinates. Therefore it is worth considering an averaging based 

evaluation method which exploits both coordinates of each fibre end-point (unlike 

conventional approaches using only one coordinate). Two suitable methods can be proposed: 

the method of average points and the method of individual coordinates.  

 

3.6. Average point method 

If the average point determined by the measured coordinates x and y does not fall onto the 

correct curve the best estimation can be obtained by normal projection of the experimental 

average point onto the correct curve calculated by the Runge-Kutta method. Such a point can 

be obtained as follows. Intersecting the correct curve with the coordinate lines running 

through the average point separately gives two intersection points on the correct curve as 

shown on Figure 6 (black ‘O’-s). The midpoint of the chord between the intersection points, 

that can be obtained as an average provides a good estimation for the right projected point on 

the correct curve (cyan ‘O’). The corresponding parameter Ω can be determined by 

calculating the Ω values directly from the intersection points separately for the coordinates y 

and x (y and x) using Equations (14) and (15) and their average is then computed with 

Equation (18).  
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The tensile elastic modulus (E) of the fibre can be obtained from Equation (19). 
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where the constant, CE, is defined by Equation (19) and determined by the fibre geometry and 

material. For a hollow fibre with outer and inner diameters do and di, and the cross-sectional 

areas calculated with them Ao=do
2π/4 and Ai=di

2π/4 respectively, the terms including cross-

sectional geometric parameters can be formulated as in Equation (20). 
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Where A=Ao-Ai is the cross-sectional area of the hollow fibre, while di=0 and d =1 are true 

for solid fibres. 

The average point method can be applied effectively to determine the average modulus of the 

fibres if the fibre geometry is consistent or its parameters are of small standard deviations 

hence CE can be assumed constant. Otherwise assessing the error of the modulus is 

problematic due to non-linearity in the formulations.  

 

3.7. Individual coordinates method 

This case the coordinates of each measured end-point (Pi) are handled separately. Ωx,i and Ωy,i 

determined for the xi and yi coordinates of each Pi are not averaged, but the individual Ex,i és 

Ey,I values are calculated with the corresponding CEi and averaged according to Equation (21). 
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Alternative to the average point method, the reciprocals of the Ω parameters calculated from 

the individual coordinates of the end-points are averaged here. The error of E  average values 
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can be estimated with the experimental standard deviation SE of the individual values. It is 

assumed that the error of the individually measured x and y end-point coordinates are 

independent, thus the 95% confidence intervals and the E relative errors can be written as in 

Equation (22): 

 E
E

n
E

n E
n

ES
tE

n

S
tEE 


  1

/
1 %95,%95,  (21) 

Where SE is the standard deviation of the individual E values and tn,95% is the relevant critical 

value of the Student distribution [25] . 

 

3.8. Demonstration of applicability 

Tables 2 and 3 present the bending modulus values (E) calculated with different approaches 

from x, y, A and Y/X based on the results of 10 deflection measurements carried out on 

solid and hollow glass fibres. The tables contain the average (Mean) bending modulus (E) 

calculated with equation (21), the coefficient of variation (CV) and the relative error of the 

mean value (MRE; 10 data: tn,95%=2.262). The A parameter of a fibre was calculated as the 

average of the individual values x and y with Equations (15) and (14), while Y/X was 

determined with Equation (16). 

The following observations can be made analysing the data in the tables:  

(i) the difference between the Ωx and Ωy based mean E values (10 data) is minor (<0.15%) for 

the solid fibres, but in case of the hollow fibres the difference is much higher (~6%)  

(ii) the CV of the bending modulus for the hollow fibres (8.4-11.1%) is higher than that of the 

solid fibres (7.3-7.8%);  

(iii) the individual coordinate method (20 data; tn,95%=2.093) is the most advantageous, which 

gives the lowest relative error of the mean value (MRE) for both the solid (1.7%) and the 

hollow (2.2%) fibres.  

 

Method of 
calculation 

Bending 
stiffness 

(IE) 

Bending modulus  
(E) (10 data)  

Bending modulus  
(E) (20 data)  

Mean 
[N·mm

2
] 

Mean 
[GPa] 

CV 
[%] 

MRE 
[%] 

Mean 
[GPa] 

CV 
[%] 

MRE 
[%] 

Y 1.03E-04 69.0 7.8 2.48 
68.9 7.5 1.7 X 1.03E-04 68.9 7.3 2.30 

A 1.03E-04 69.0 8.7 2.75       

Y/X 1.03E-04 68.5 7.8 2.47       

Table 2 Calculated parameters for solid fibres 
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Method of 
calculation 

Bending 
stiffness 

(IE) 

Bending modulus  
(E) (10 data)  

Bending modulus  
(E) (20 data)  

Mean 
[N·mm

2
] 

Mean 
[GPa] 

CV 
[%] 

MRE 
[%] 

Mean 
[GPa] 

CV 
[%] 

MRE 
[%] 

Y 1.10E-04 69.5 8.4 2.64 
71.6 9.7 2.2 X 1.17E-04 73.6 11.1 3.51 

A 1.04E-04 66.1 6.9 2.18       

Y/X 1.17E-04 73.6 11.0 3.47       

Table 3 Calculated parameters for hollow fibres before discarding the outlier data points 

 

High scatter is attributed mainly to the four data points lying out of the boundary curves in 

case of the hollow fibres. Discarding these four outliers the remaining points fit very well to 

the end-point curve (Figure 4). As a consequence the CV decreased from 9.7% to 7.2% (20 

and 12 data) while the relative error of the average modulus (MRE; 6 data: tn,95%=2.571; 12 

data: tn,95%=2.201) increased from 2.2% to 4.6% as it can be seen in Table 4. The increase in 

MRE despite of the reduction in CV issued from the decrease in the number of data (2016) 

and the mean (71.6 GPa66.2 GPa). The latter was due to the effect that the outliers 

belonged to apparently stiffer fibres with smaller vertical displacement. This error was 

probably caused by out of the plane displacements of the fibre end-points (see Figure 4). 

 

Method of 
calculation 

Bending 
stiffness 

(IE) 

Bending modulus  
(E) (6 data)  

Bending modulus  
(E) (12 data)  

Mean 
[N·mm

2
] 

Mean 
[GPa] 

CV 
[%] 

MRE 
[%] 

Mean 
[GPa] 

CV 
[%] 

MRE 
[%] 

Y 9.09E-05 67.1 7.4 7.72 
66.2 7.2 4.6 X 8.90E-05 65.2 7.3 7.70 

A 8.99E-05 66.1 7.2 7.57       

Y/X 9.13E-05 67.1 7.0 7.33       

Table 4 Calculated parameters for hollow fibres after discarding the outlier data points 

 

By measuring both the vertical and the horizontal coordinates of the fibre end-point and using 

the individual coordinate method for evaluation the MRE of the elastic modulus was reduced 

to 69% or 83% of the original values for the solid and hollow fibres, respectively. In addition, 

discarding the outliers by using the determined boundary curves reduced the number of 

valuable data points for hollow fibres however decreased the CV as well. In the case of much 

more test data the filtering can also be advantageous for the MRE.  
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4. Conclusion 

The elastic modulus of solid and hollow fibres was determined from fibre deflection tests. Our 

previous work highlighted that taking only the vertical displacement of the fibre end-point 

into account results in excessive error and high scatter. In order to reduce the errors, the 

horizontal displacement was measured as well. The theoretical curve of the fibre end-point 

was determined with the Runge-Kutta method as well as upper and lower boundary curves 

were found which allowed the identification and filtering of the outliers that were obviously 

erroneous data points. For making the best use of the test data two statistical evaluation 

methods were developed. In order to demonstrate the applicability of the methods developed, 

some fibre deflection tests were performed on solid and hollow glass fibres. The evaluation 

using the individual coordinate method resulted in 17-31% reduction in the relative error of 

the determined mean elastic modulus of solid and hollow fibres. Discarding 4 outlier data-

points by using the boundary curves provided 26% reduction in CV for the hollow fibres.  

Consequently, the new method can improve the accuracy of the modulus evaluation without 

increasing the number of tested fibres therefore it provides more accurate input for analysis of 

the stiffness of composite structures than the conventional method using only the vertical 

displacement of the fibre end-point. Future task can be the extensive validation of the new 

evaluation method on various fibre types. 
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