MTA-BME Research Group






Development of a value-added, multifunctional biopolymer packaging system and production technology

Project ID:
NVKP_16-1-2016-0012
Supported by:
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFIH)
Term:
1 January 2017 - 31 December 2019
Supervisor (BME):
Dr. Tamás Bárány
Dr. Ákos Kmetty
Participant researchers (BME):
Dr. Mészáros László
Dr. Pölöskei Kornél
Dr. Morlin Bálint Dénes
Gere Dániel
Tomin Márton
Litauszki Katalin
Dr. Kovács Norbert Krisztián
Petrény Roland
Dr. Hajba Sándor
Dr. Szebényi Gábor
Dr. Bodzay Brigitta
Bordácsné Dr. Bocz Katalin
Igricz Tamás
Dr. Marosi György
Dr. Szolnoki Beáta
Vadas Dániel
Consortium partners (BME):
DS Smith Packaging Hungary Kft. (Konzorciumvezető)
Polifoam Műanyagfeldolgozó Kft.

Project summary

The goal of the project is to develop new, multifunctional biopolymer-based packaging systems, and design their controlled manufacturing technology. In the project we will do a wide range of basic research (e.g. softening, increasing thermal stability, strengthening) to modify the properties of polylactic acid (PLA) in order to make them easier to adjust flexibly and controllably according to the requirements (e.g. distribution of molecular weight, crystallinity, processing window, strength, stiffness etc.) of innovative packaging applications. We plan to make multifunctional packaging materials from the developed biopolymer types, first making sheets, then performing thermoforming and foaming.

Project results

Section 1
1 January 2017 - 30 June 2018
We found from our extensive laboratory and industrial experiments that the glass transition temperatures and the cold crystallization and crystalline melting maximum temperatures of the examined polylactide (PLA) samples decreased as a result of the addition of the lactic acid oligomer (Fig. 1). We performed successful hot forming experiments and found that the processing window somewhat narrows as a result of the lactic acid oligomer but forming temperature becomes lower and the ductility of the material increases, which facilitates hot forming. Cyclic fatigue tests showed that the oligomer content considerably improves the toughness of the hot-formed product. We showed that the nucleating agents added to PLA significantly increase the heat deflection temperature of subsequently heat-treated specimens—from ~55 °C to 140 °C. We also proved that the ball fracturing test can be successfuly used to grade sheet/film-based preforms and a relationship can be found between these results and hot forming technological parameters. Using the experimental thermoforming process, we graded hinges, etc. and manufacturing technology parameters with prototype molds. With our industrial sheet manufacturing experiments we identified manufacturing technology parameters. We produced low-density microcell PLA foams by chemically and physically foaming the reference PLAs of different D-lactide content. We showed that during foaming the composition of the extrudate and the density of the foam can be followed and graded by Raman spectrometry. We also showed that flame-retarded PLA foams can be produced by adding functionalized additives, and in the UL-94 test, the best, V-0 (self-extinguishing) grade can be achieved. The compression strength of the manufactured flame-retarded PLA foams is comparable to the EPS-100 type foams.
Figure 1. Effect of the Lactic-acid oligomeric on the morphological properties of polylactic acid

Section 2
1 July 2018 - 31 December 2019



Project-related publications


  1. Petrovszki D., Litauszki K., Mészáros L.: A szilárd fázisú polikondenzáció hatása a politejsav kristályos tulajdonságaira. Polimerek, 6, 829-833 (2020)
  2. Pölöskei K., Csézi G., Hajba S., Tábi T.: Investigation of the thermoformability of various D-Lactide content Poly(Lactic Acid) films by ball burst test. Polymer Engineering and Science, 60, 1266-1277 (2020) 10.1002/pen.25378 IF(2019)=1.917 Q2
  3. Litauszki K., Kmetty Á.: Characterization of chemically foamed poly(lactic acid). IOP Conference Series: Materials Science and Engineering, 903, 012018/1-012018/1-7 (2020) 10.1088/1757-899X/903/1/012018
  4. Gere D., Czigány T.: Future trends of plastic bottle recycling: Compatibilization of PET and PLA. Polymer Testing, 81, 106160/1-106160/10 (2020) 10.1016/j.polymertesting.2019.106160 IF(2019)=3.275 Q1
  5. Tábi T., Csézi G., Kovács N. K.: 3D nyomtatott biokompozit vázszerkezetű fröccsöntött termékek vizsgálata. Polimerek, 6, 1042-1046 (2020)
  6. Kmetty Á., Litauszki K.: Development of Poly (Lactide Acid) Foams with Thermally Expandable Microspheres. Polymers, 12, 16 (2020) 10.3390/polym12020463 IF(2019)=3.426 Q1
  7. Litauszki K., Kmetty Á.: Politejsav kémiai habképzésének lehetőségei exoterm és endoterm típusú habképzőszerek alkalmazásával. Polimerek, 6, 1138-1142 (2020)
  8. Gere D., Czigány T.: Recycling of Mixed Poly(Ethylene-terephthalate) and Poly(Lactic Acid). in '2018 International Conference on Materials Science and Manufacturing Engineering (MSME 2018) Párizs, Franciaország. 2018.11.08-10.,6 (2019)
  9. Bocz K., Molnár B., Marosi Gy., Ronkay F.: Preparation of Low-Density Microcellular Foams from Recycled PET Modified by Solid State Polymerization and Chain Extension. Journal of Polymers and the Environment, 27, 343-351 (2019) 10.1007/s10924-018-1351-z IF=2.572 Q2
  10. Litauszki K., Kovács Zs., Mészáros L., Kmetty Á.: Accelerated photodegradation of poly(lactic acid) with weathering test chamber and laser exposure – A comparative study. Polymer Testing, 76, 411-419 (2019) 10.1016/j.polymertesting.2019.03.038 IF=3.275 Q1
  11. Decsov K., Bocz K., Szolnoki B., Bourbigot S., Fontaine G., Vadas D., Marosi Gy.: Development of Bioepoxy Resin Microencapsulated Ammonium-Polyphosphate for Flame Retardancy of Polylactic Acid. Molecules, 24, 4123/1-4123/23 (2019) https://doi.org/10.3390/molecules24224123 IF=3.267 Q2
  12. Hajba S., Tábi T.: Cross effect of natural rubber and annealing on the properties of poly(lactic acid). Periodica Polytechnica-Mechanical Engineering, 63, 270-277 (2019) 10.3311/PPme.12825
  13. Tábi T.: The application of the synergistic effect between the crystal structure of Poly(Lactic Acid) (PLA) and the presence of Ethylene Vinyl Acetate copolymer (EVA) to produce highly ductile PLA/EVA blends. Journal of Thermal Analysis and Calorimetry, 138, 1287-1297 (2019) 10.1007/s10973-019-08184-x IF=2.731 Q2
  14. Litauszki K., Kmetty Á.: Extrusion Foaming of Poly(Lactic Acid) with Thermally Expandable Microspheres. in 'SPE Foams 2019 Valladolid, Spanyolország. 2019.10.02.-10.03.,1-5 (2019)
  15. Vadas D., Igricz T., Sarazin J., Bourbigot S., Marosi Gy., Bocz K.: Flame retardancy of microcellular poly(lactic acid) foams prepared by supercritical CO2-assisted extrusion. Polymer Degradation and Stability, 153, 100-108 (2018) 10.1016/j.polymdegradstab.2018.04.021 IF=3.78 Q1
  16. Mészáros L., Gonda B.: Development of basalt fibre and montmorillonite nanoparticle co-reinforced poly(lactic-acid) matrix hybrid composites. in '9th International Conference on Nanomaterials - Research and Application, NANOCON 2017 Brno, Csehország. 2017.10.18-2017.10.20.,212-217 (2018)
  17. Litauszki K., Kmetty Á.: Development and characterization of innovative biopolymer foams. IOP Conference Series: Materials Science and Engineering, 426, 1-8 (2018) 10.1088/1757-899X/426/1/012031
  18. Vadas D., Kmetty Á., Bárány T., Marosi G., Bocz K.: Flame retarded self-reinforced polypropylene composites prepared by injection moulding. Polymers for Advanced Technologies, 29, 433-441 (2018) 10.1002/pat.4132 IF=2.162 Q2
  19. Vadas D., Kmetykó D., Szabó B., Marosi Gy., Bocz K.: Ömledékfúvással gyártott mikroszálak felhasználása önerősített politejsav kompozitok előállítására. Polimerek, 4, 245-250 (2018)
  20. Gonda B., Mészáros L.: A hőkezelés tulajdonságmódosító hatása bazaltszál erősítésű politejsav kompozit esetében. in 'OGÉT 2018: XXVI. Nemzetközi Gépészeti Konferencia: 26th International Conference on Mechanical Engin Marosvásárhely, Románia. 2018.04.26-2018.04.29.,147-150 (2018)
  21. Litauszki K., Kmetty Á., Bárány T.: Politejsav alapú bio-habok fejlesztése expandálható mikrokapszula felhasználásával. Polimerek, 4, 316-321 (2018)
  22. Kmetty Á., Litauszki K.: Characterisation of Poly(lactic Acid) Foams produced by extrusion with different chemical blowing agents. in '4th Edition of International Conference on Polymer Science and Technology London, Egyesült Királyság. 2018.06.04-2018.06.05, (2018)
  23. Marosi Gy., Hirsch E., Bocz K., Toldy A., Szolnoki B., Bodzay B., Csontos I., Farkas A., Balogh A., Démuth B., Nagy Z., Pataki H.: Pharmaceutical and macromolecular technologies in the spirit of industry 4.0. Periodica Polytechnica-Chemical Engineering, 64, 4 (2018) 10.3311/PPch.12870 IF=1.382 Q3
  24. Hajba S., Tábi T.: Investigation of long cellulose fibre reinforced and injection moulded Poly(lactic acid) biocomposites. Acta Technica Jaurinensis, 11, 150-164 (2018) 10.14513/actatechjaur.v11.n3.469
  25. Vadas D., Kmetykó D., Marosi Gy., Bocz K.: Application of melt-blown poly(lactic acid) fibres in self-reinforced composites. Polymers, 10, 1-12 (2018) 10.3390/polym10070766 IF=3.164 Q1
  26. Gere D., Czigány T.: Rheological and mechanical properties of recycled polyethylene films contaminated by biopolymer. Waste Management, 76, 190-198 (2018) 10.1016/j.wasman.2018.02.045 IF=5.431 Q1
  27. Tábi T., Wacha A. F., Hajba S.: Effect of D-Lactide content of annealed Poly(lactic acid) on its thermal, mechanical, heat deflection temperature, and creep properties. Journal of Applied Polymer Science, 135, 47103/1-47103/10 (2018) 10.1002/app.47103 IF=2.188 Q2
  28. Bocz K., Decsov K. E., Farkas A., Vadas D., Bárány T., Wacha A. F., Bóta A., Marosi Gy.: Non-destructive characterisation of all-polypropylene composites using small angle X-ray scattering and polarized Raman spectroscopy. Composites Part A (Applied Science and Manufacturing), 114, 250-257 (2018) 10.1016/j.compositesa.2018.08.020 IF=6.282 D1
  29. Gonda B., Mészáros L.: A bazaltszál és a montmorillonit jelenlétének hatása a politejsav termomechanikai tulajdonságaira. Polimerek, 4, 285-289 (2018)
  30. Hajba S., Tábi T.: Gócképzők hatása a politejsav tulajdonságaira. Polimerek, 4, 387-390 (2018)
  31. Kmetty Á., Litauszki K., Réti D.: Characterization of Different Chemical Blowing Agents and Their Applicability to Produce Poly(Lactic Acid) Foams by Extrusion. Applied Sciences, 8, 1-17 (2018) 10.3390/app8101960 IF=2.217 Q2
  32. Kiss Z., Temesi T., Czigány T.: Adherability and weldability of poly(lactic acid) and basalt fibre-reinforced poly(lactic acid). Journal of Adhesion Science and Technology, 32, 173-184 (2018) 10.1080/01694243.2017.1349716 IF=1.21 Q3
  33. Vadas D., Bocz K., Igricz T., Tábi T., Szabó B., Marosi Gy.: Égésgátolt politejsav habok előállítása szuperkritikus szén-dioxiddal segített extruzióval. Polimerek, 3, 156-160 (2017)

© 2014 BME Department of Polymer Engineering - Created by: Dr. Romhány Gábor