MTA-BME Research Group






Project ID:
2019-1.1.1-PIACI-KFI-2019-00205
Supported by:
Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal (NKFIH)
Term:
1 April 2020 - 31 Marc 2024
Supervisor (BME):
Dr. József Gábor Kovács
Dr. András Suplicz
Participant researchers (BME):
Dr. Kovács József Gábor
Dr. Suplicz András
Consortium partners (BME):
ICO Zrt. (Konzorciumvezető)

Project results

Section 1
1 April 2020 - 31 Marc 2021
During the reporting period, we conducted a comprehensive literature search at the BME Department of Polymer Engineering to establish our knowledge in the field of polyethylene terephthalate and biopolymers. For both, we explored their main properties and their modification potentials. More extensive research has been carried out in the field of polylactic acid (PLA) as a potential raw material for our developments. The literature research has identified the main processes and additives that can modify the morphological and mechanical properties (HDT, crystallinity, modulus, impact properties) of polylactic acid according to the defined list of requirements. In our experiments, we focused on increasing the crystallinity, impact work and HDT (heat distortion temperature) of PLA. One possible method to increase the crystallinity is the use of nucleating agents (talc or Ecopromote). Still, due to the intensive cooling typically used in injection moulding, the increase achieved is not sufficient to significantly increase the HDT. Thus, in addition to the nucleation, the product must be crystallised in the mould or subsequently at elevated temperatures. This method also allows a significant increase in heat retention. Increasing the crystalline fraction increases the HDT and the impact work, and the modulus of elasticity. Furthermore, it has been shown that toughening additives alone only slightly improve the impact work of PLA, in which case a post-heat treatment at 90°C is also required. In addition to the material development, we have also prepared CAD models of two existing injection moulding tools and the products manufactured with them, which were used to build simulation models for the analysis of the injection moulding processes. We also optimized the geometry of a polymer spring for use in pens by finite element simulation for the original PP and biodegradable PLA material.
Material and product development

Section 2
1 April 2021 - 31 Marc 2022

Section 3
1 April 2022 - 31 Marc 2023

Section 4
1 April 2023 - 31 Marc 2024



Project-related publications


  1. Boros R., Ageyeva T., Kovács J. G.: Plasma treatment to improve the adhesion between ABS and PA6 in hybrid structures produced by injection overmolding. Polymer Testing, 106, 107446/1-107446/ (2022) 10.1016/j.polymertesting.2021.107446 IF=4.282 Q1
  2. Tábi T., Pölöskei K.: The effect of processing parameters and Calcium-stearate on the ejection process of injection molded Poly(Lactic Acid) products. Periodica Polytechnica-Mechanical Engineering, 66, 17-25 (2022) 10.3311/PPme.18246
  3. Kirchkeszner Cs., Petrovics N., Tábi T., Magyar N., Kovács J., Szabó B. S., Nyiri Z., Eke Zs.: Swelling as a promoter of migration of plastic additives in the interaction of fatty food simulants with polylactic acid- and polypropylene-based plastics. Food Control, 132, 108354/1-108354/12 (2021) 10.1016/j.foodcont.2021.108354 IF=5.548 Q1
  4. Szuchács A., Ageyeva T., Boros R., Kovács J. G.: Bonding strength calculation in multicomponent plastic processing technologies. Materials And Manufacturing Processes, 36, 1-9 (2021) 10.1080/10426914.2021.1948052 IF=4.616 Q2
  5. Tábi T.: Tények és tévhitek a biopolimerekkel kapcsolatban - I. rész (másodközlés). Polimerek, 7, 298-301 (2021)
  6. Tábi T.: Tények és tévhitek a biopolimerekkel kapcsolatban - II. rész (másodközlés). Polimerek, 7, 337-340 (2021)
  7. Rajamani P. K., Ageyeva T., Kovács J. G.: Personalized Mass Production by Hybridization of Additive Manufacturing and Injection Molding. Polymers, 13, 1-19 (2021) 10.3390/polym13020309 IF=4.329 Q1
  8. Krizsma Sz. G., Kovács N. K., Kovács J. G., Suplicz A.: In-situ monitoring of deformation in rapid prototyped injection molds. Additive Manufacturing, 42, 102001/1-102001/8 (2021) 10.1016/j.addma.2021.102001 IF=10.998 D1
  9. Szabó F., Suplicz A., Kovács J. G.: Development of injection molding simulation algorithms that take into account segregation. Powder Technology, 389, 368-375 (2021) https://doi.org/10.1016/j.powtec.2021.05.053 IF=5.134 Q1
  10. Krizsma Sz., Suplicz A.: Additív gyártástechnológiával előállított fröccsöntő szerszámbetétek üzem közbeni deformációinak vizsgálata. Polimerek, , 155-160 (2021)
  11. Tábi T.: Fröccsöntött politejsav biopolimer sorozatgyárthatóságának elemzése. in 'XXIX. Nemzetközi Gépészeti Konferencia (OGÉT 2021) Románia. 2021.04.23.,200-203 (2021)
  12. Csézi G., Tábi T.: Orientált biopolimer szerkezetek vizsgálata. in 'XXIX. Nemzetközi Gépészeti Konferencia (OGÉT 2021) Románia. 2021.04.23.,101-105 (2021)
  13. Tábi T., Ageyeva T., Kovács J. G.: Improving the ductility and heat deflection temperature of injection molded Poly(lactic acid) products: A comprehensive review. Polymer Testing, 101, 107282/1-107282/36 (2021) 10.1016/j.polymertesting.2021.107282 IF=4.282 Q1
  14. Semperger O. V., Pomlényi P., Suplicz A.: Felület-bevonatolási eljárás T-RTM technológiához. Polimerek, 7, 186-192 (2021)

© 2014 BME Department of Polymer Engineering - Created by: Dr. Romhány Gábor