HUN-REN-BME Research Group





Developing a new generation of manufacturing process of tailor-made medical implants and tailor-made medical aids for additive technologies

Project ID:
Supported by:
Hungarian National Research, Development and Innovation Office (NKFIH)
Term:
1 January 2017 - 31 December 2019
Supervisor (BME):
Dr. Norbert Krisztián Kovács
Dr. Takács János
Participant researchers (BME):
Dr. Zoltán Kiss
Dr. Kolos Molnár
Dr. Gábor Romhány
Dr. András Suplicz
Dr. Péter Bakonyi
Dr. Gábor Szebényi
Consortium partners (BME):
Varinex Zrt.

Project summary

The goal of the project is to create and develop a new generation of tailor-made medical devices (which need to be tailor-made) by developing the complex system of additive manufacturing processes (data collection and processing, modelling, virtual manufacturing finite element analysis, validating based on measurements, 3D printing. The results of the project will be the creation of tailor-made implants and devices in human medicine. Current mass-produced implants cannot suit everybody since people are different and this inevitably leads to imperfect solutions. Mostly focusing on laser additive technologies, we plan to make a manufacturing standard and smart plant for the manufacturing of tailor-made medical devices which integrate smaller-scale individual development results at a systemic level by creating and maintaining long-term cooperation between the industry and BME.

Project results

Section 1
1 January 2017 - 31 December 2018

Section 2
1 January 2019 - 31 December 2019
In the least year of the project, our main task was to validate the procedure we developed in the second year (special injection molding technology) by manufacturing the polymer element (polyethylene insert) of a hip implant that the consortium developed. As a first step, we checked with simulations whether a polyethylene insert we received from the consortium partners can be manufactured, and analyzed the effect of a different gate location on the properties of the product. Then we used information acquired this way to design the mold. In the mold produced by 3D printing, we performed injection molding tests with polypropylene (Tipplen H145F), acrylonitrile butadiene styrene (Terluran GP35) and ultra-high molecular weight polyethylene (Lumbert 4000). After injection molding, we digitized the polyethylene insert injection molded and 3D printed (PolyJet) from the different polymers with a 3D scanner (GOM ATOS Core 5M), and compared the results with the CAD model. We managed to manufacture good products from all three polymers: 15 products from polypropylene, 5 products from ABD and 5 from UHMWPE.
Small series production of plastic liner



Project-related publications


  1. Kotrocz L., Bakonyi P.: Mélységérzékeny benyomódásmérés hőmérsékletfüggésének vizsgálata DMA berendezésben. Anyagvizsgálók Lapja, III., 30-34 (2021)
  2. Keszei K., Kovács N. K.: Investigation of Injection Moulded UHMWPE Liner Manufacturability. in '2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP) Sumy, Ukrajna. 2020.11.09-2020.11.13.,5 (2020)
  3. Ureczki Á., Keszei K.: Prospects in innovative manufacturing technology of UHMWPE for prostheses and comparison with medical grade UHMWPE. Biomechanica Hungarica, 12, 43-51 (2019) 10.17489/biohun/2019/1/04
  4. Lukács N. L., Ficzere PP, Temesi T.: Gyártási paraméterektől függő rétegközi hibák vizsgálata CAD szoftverekkel. Gép, LXX. (3), 54-57 (2019)
  5. Zink B., Kovács N. K., Kovács J. G.: Thermal analysis based method development for novel rapid tooling applications. International Communications in Heat and Mass Transfer, 108, 104297/1-104297/9 (2019) 10.1016/j.icheatmasstransfer.2019.104297 IF=3.971 Q1
  6. Tari G., Szabó F., Suplicz A.: Áramlási egyenetlenségek valós idejű elemzése fröccsöntő szerszámban. Polimerek, 5, 424-428 (2019)
  7. Temesi T., Kiss Z.: Nem tömör szerkezetű, 3D nyomtatott orvostechnikai implantátumot modellező próbatestek vizsgálata. in 'XXVII. Nemzetközi Gépészeti Konferencia (OGÉT 2019) Nagyvárad, Románia. 2019.04.25-2019.04.28.,557-560 (2019)
  8. Kotrocz L., Bakonyi P.: Pontszerű terhelés vizsgálata egyedi mérőfeltéttel DMA berendezésben. in 'XXVII. Nemzetközi Gépészeti Konferencia Nagyvárad, Románia. 2019.04.25-2019.04.28.,292-295 (2019)
  9. Kotrocz L., Bakonyi P.: Pontszerű terhelésre alkalmas mérőfeltét tervezése DMA berendezéshez. in 'OGÉT 2018, XXVI. Nemzetközi Gépészeti Konferencia Marosvásárhely, Románia. 2018.04.26-2018.04.29,5 (2018)
  10. Suplicz A., Kovács N. K.: Polimer alapú 3D nyomtatott prototípus fröccsöntő szerszámbetétek formaüregének indirekt nyomásmérése. in 'OGÉT 2018: XXVI. Nemzetközi Gépészeti Konferencia: 26th International Conference on Mechanical Engin Marosvásárhely, Románia. 2018.04.26-2018.04.29.,434-437 (2018)
  11. Kotrocz L., Bakonyi P.: Pinpoint Loading Examinations of Poly(lactic acid) Biopolymers. Acta Technica Jaurinensis, 11, 206-217 (2018) 10.14513/actatechjaur.v11.n4.480
  12. Kotrocz L., Bakonyi P.: The Examination of Photopolymer-based 3D Printed Products in the Case of Pinpoint Loading. in 'iCAT2018 7th International Conference on Additive Technologies Maribor, Szlovénia. 2018.10.10-2018.10.11.,5 (2018)
  13. Szebényi G., Czigány T., Magyar B., Karger-Kocsis J.: 3D printing-assisted interphase engineering of polymer composites: Concept and feasibility. Express Polymer Letters, 11, 525-530 (2017) 10.3144/expresspolymlett.2017.50 IF=3.064 Q1

© 2014 BME Department of Polymer Engineering - Created by: Dr. Romhány Gábor