HUN-REN-BME Research Group





National Laboratory of Cooperative Technologies

Project ID:
2022-2.1.1-NL-2022-00012
Supported by:
Hungarian National Research, Development and Innovation Office (NKFIH)
Term:
1 December 2022 - 30 October 2026
Supervisor (BME):
Dr. Gábor Szebényi

Participant researchers (BME):
Dr. Gábor Szebényi
Dr. Bálint Morlin
Bertalan Papp
Péter Sántha
Bence Szederkényi
Gergő Zsolt Marton
Péter Csvila
Dr. Norbert Krisztián Kovács
Consortium partners (BME):
TECHTRA Technológia Transzfer Intézet Közhasznú Nonprofit Zrt.
Autóipari Próbapálya Zala Korlátolt Felelősségű Társaság
CollMot Robotikai kutató-fejlesztő Korlátolt Felelősségű Társaság
Femtonics Kutató és Fejlesztő Korlátolt Felelősségű Társaság
HM Elektronikai, Logisztikai és Vagyonkezelő Zártkörűen Működő Részvénytársaság
Magyar Agrár- és Élettudományi Egyetem
Magyar Honvédség Haderőmodernizációs és Transzformációs Parancsnokság
MouldTech Systems Korlátolt Felelősségű Társaság
Nemzeti Közszolgálati Egyetem
Pécsi Tudományegyetem
Számítástechnikai és Automatizálási Kutatóintézet
Széchenyi István Egyetem
Szegedi Tudományegyetem

Project summary

The National Laboratory for Cooperative Technologies builds and develops multi-purpose industrial innovation capacities and competences. Its main objective is the physical and material realisation of an "innovation space" that plays a key role in the digitalisation, research and development of industry and its related multipurpose industries at national and regional level. Domestic multi-purpose innovation developments aim at building a multi-purpose innovation system (ecosystem) based on domestic research and knowledge base, producing dual-use (military and civil) products, which, due to its need for decisive technical competences and knowledge, relies heavily on the existing and further developed competences and capacities of domestic universities and research institutions, involving innovative industrial partners. The National Laboratory for Cooperative Technologies is a programme and instrument for the development of an infrastructural and professional base for the intellectual, innovative and coordinative tasks of multi-purpose development.

Project results

Section 1
1 December 2022 - 30 November 2023
At the start of the project, we produced presentation slides giving an overview of the manufacturing technologies relevant to drone production. We also reviewed the material parameters and sizing strategies required for finite element modelling of composite structures. Based on the information gathered, we have developed a pilot design, collected relevant standards and prepared test specifications. As with composite manufacturing, we started by designing capability tests for 3D printing technologies by preparing a technology overview. We gathered materials and manufacturing technologies that could be used for drone components, with a view to having as wide a palette as possible by the end of the project. For both thermoplastic and thermosetting pure polymer printing technologies, as well as for composite printing technologies, we collected the parameter ranges required for printing, as well as the parameters to be defined for subsequent design and material modeling. A test plan was drawn up and the available measuring instruments and competences were assessed. To define material models, we first reviewed the types of material behaviour of polymers and their composites. We reviewed the critical fibre lengths that a reinforcing material must have to achieve the appropriate composite behaviour for each processable matrix material. To set up material models, we reviewed the orientations at which different material behaviour can be expected for different printing technologies. For the parameter determinations, test specimens were prepared for mechanical purposes for tensile, flexural, impact bending tests and hardness measurements. The fatigue properties are to be obtained by tensile fatigue tests. The static and dynamic mechanical properties of the selected materials were determined for the material models. The fatigue tests have been started.
Failure of composite specimens printed with Markforged printer from ONYX CF GF and Kevlar materials during tensile testing

Section 2
1 December 2023 - 30 November 2024

Section 3
1 December 2024 - 30 November 2025

Section 4
1 December 2025 - 30 November 2026

Section 5
00 00 0000 - 00 00 0000



Project-related publications


  1. Csvila P., Czigány T.: Multifunctional energy storage polymer composites: The role of nanoparticles in the performance of structural supercapacitors. Express Polymer Letters, 18, 1023-1038 (2024) 10.3144/expresspolymlett.2024.78 IF=2.7 Q2
  2. Szebényi G., Marton G. Zs., Romhány G.: Damage localization in designed failure composites. in 'ECCM21 – 21st European Conference on Composite Materials Nantes, Franciaország. 2024.07.02-2024.07.05.,156-160 (2024)
  3. Szederkényi B., Czigány T., Kovács N. K.: Investigation of continuous fiber–reinforced triply periodic minimal surfaces (TPMS) for high-performance energy absorption applications. in 'ECCM21 – 21st European Conference on Composite Materials Nantes, Franciaország. 2024.06.02-2024.06.05.,1651-1658 (2024)
  4. Szederkényi B., Rácz I., Kovács N.K., Czigány T.: Finite element modelling of continuous fiber–reinforced composites produced by automated manufacturing. IOP Conference Series: Materials Science and Engineering, 1313, 012002/1-012002/8 (2024) 10.1088/1757-899X/1313/1/012002
  5. Tóth Cs., Virág Á. D., Vas L. M., Kovács N. K.: Prediction and analysis of flexural stiffness for 3D-printed continuous fiber–reinforced composites with different matrix fill ratios and layer orders. Polymer Testing, 135, 108459/1-108459/11 (2024) https://doi.org/10.1016/j.polymertesting.2024.108459 IF=5 D1
  6. Czél G.: Direct comparison of novel unidirectional sandwich coupon designs for accurate tensile failure strain determination of carbon fibre epoxy material. in 'ECCM21 – 21st European Conference on Composite Materials Nantes, Franciaország . 2024.07.02.-05.,Vol 4. 25-32 (2024)
  7. Marton G. Zs., Fendrik Á., Szebényi G.: Manufacturing of composites with designed failure. IOP Conference Series: Materials Science and Engineering, 1313, 012014/1-012014/9 (2024) 10.1088/1757-899X/1313/1/012014
  8. Tóth Cs., Lukács N. L., Kovács N. K.: The role of the fiber–matrix interface in the tensile properties of short fiber–reinforced 3D-printed polylactic acid composites. Polymer Composites, , 14 (2024) https://doi.org/10.1002/pc.28720 IF=4.8 Q1
  9. Szederkényi B., Kovács N. K., Czigány T.: A comprehensive review of fiber-reinforced topology optimization for advanced polymer composites produced by automated manufacturing. Advanced Industrial and Engineering Polymer Research, In Press, , -18 (2024) 10.1016/j.aiepr.2024.05.002 IF=9.9 D1
  10. Marton G. Zs., Szebényi G.: The effect of pattern width on the properties and behavior of interfacially engineered composites with designed failure. in 'ECCM21 – 21st European Conference on Composite Materials Nantes, Franciaország. 2024.07.02-2024.07.05.,1438-1443 (2024)
  11. Nemes-Károly I., Szebényi G.: Reliable methods for classification, characterization, and design of cellular structures for patient-specific implants. Materials, 16, 4146/1-4146/ (2023) 10.3390/ma16114146 IF=3.1 Q1
  12. Csvila P., Czigány T.: Szén-alapú vezetőképes szerkezeti kompozitok gyártása és tulajdonságainak elemzése. Gép, 74, 39-44 (2023)
  13. Marton G. Zs., Mezey Z., Czél G.: Prepregből autoklávban gyártott kompozit lemezek rétegközi tulajdonságainak alakulása a térhálósítás során alkalmazott technológiai paraméterek függvényében. in 'XXXI. Nemzetközi Gépészeti Konferencia (OGÉT 2023) Temesvár, Románia. 2023.04.27-2023.04.30.,354-359 (2023)

© 2014 BME Department of Polymer Engineering - Created by: Dr. Romhány Gábor