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Abstract. Conventional plasma nitriding is highly widespread in the industry, but it has essential 

problems such as edge effect and hollow cathode effect. These problems induced the develop-

ment of active screen plasma nitriding (ASPN) where the plasma forms on the active screen 

instead of the sample, which is completely insulated. However, this arrangement does not work 

with large furnaces, so the usage of bias voltage is necessary in industrial circumstances. In this 

experiment, the effects of different biases were examined, specifically the hardness, layer thick-

ness, formed phases and the diffusion of nitrogen. In conclusion, the 20 % bias had the best 

effects on the sample with the defined nitriding parameters in this research. 

1.  Introduction 

Plasma nitriding is a thermochemical surface treatment which can improve the hardness and the wear 

resistance of the steel. When the nitrogen – hydrogen gas mixture enters the process chamber, the gas 

becomes ionized between the anode (furnace wall) and the cathode (workpiece). The positively charged 

ions bombard the surface of the piece which heats up [1–3]. This issue a glow discharge when the par-

ticles absorb into the surface of the material. The three most important factors of the treatment are the 

pressure, the high voltage and the ratio of the used gas mixture. The temperature and time of the treat-

ment also influences the properties of the nitride layer. 

The direct current plasma nitriding (DCPN) is a traditional surface treatment over 40 years. The 

DCPN technology has different shortcomings which cause a damage on the parts, such as ‘edge effect’ 
or ‘hollow cathode effect’ [3–5]. The active screen plasma nitriding was developed to solve the previous 

problems. In this technology the plasma is produced on the screen, not directly on the workpiece there-

fore it causes a more homogenous surface [6–8]. In this case the worktable is isolated from the place of 

the voltage, so heating of the ASPN is slow. To increase this process the components are in a floating 

potential or a relative lower bias voltage [8, 9]. 

2.  Materials and methods 

The materials used in this study are tempered 42CrMo4 type low alloy steel and annealed C45 type 

carbon steel, their chemical compositions are shown in table 1. The sample disks were 20 mm in diam-

eter and 6 mm in thickness. The sample’s surface was mechanically ground with 80 to 2500-grit SiC 

emery paper, finely polished with 3 m diamond suspension. They were cleaned in acetone and dried 

before placement to the vacuum chamber. 

http://creativecommons.org/licenses/by/3.0
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Table 1. Chemical composition of materials in wt.% 

Steel C Si Mn P S Cr Mo 

42CrMo4 0.38–0.45 ≤  0.4 0.6–0.9  ≤  0.025 ≤  0.035 0.9–1.2  1.5–0.3 

C45 0.42–0.5  ≤  0.4 0.5–0.8 ≤  0.045 ≤  0.045 ≤ 0.4 ≤  0.1 

 

The plasma nitriding system was built by own plan. Parameters easily set to the different methods. 

Figure 1 shows the schematic workplace of the chamber. The active screen was made of unalloyed 

1.0330 type steel. The dimension is 100×85 mm with  5×8 mm holes and centers. All treatments 

were carried out using the same parameters as shown in Table 2 and following the same procedures. 

Bias voltage was adapting to the main voltage. The bias is 10 %, 20 % of the main voltage at the same 

parameters of the process. After the nitriding, free cooling started to the turning of the plasma. The 

workpiece was cooling down from the process temperature to the room temperature under the nitriding 

pressure. 

 

Figure 1. Schematic model of the nitriding chamber (biased arrangement) 

Table 2. Parameters of plasma nitriding 

Voltage 

(V) 

Current 

(A)  

Gas mixture 

N2:H2 (%) 

Temperature 

(°C) 
Pressure 

(torr) 

Time 

(h) 

490 – 540 0,9 – 1,5 25:75  490 2,8 4  

Optical microscope and scanning electron microscope were used to examine morphology and meas-

ure thickness of nitrided layer. The hardness profile was determined by micro Vickers indenter with a 

load of 50g. The phase composition of the compound layer on the surface was determined by X-ray 

diffractometer (XRD) using CuKα radiation [10–15] . 
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3.  Results and discussion 

3.1.  Surface analysis by optical microscope 

First, DCPN and ASPN treated C45 samples were compared. The edge effect was observed at the treat-

ment of DCPN as it can be seen in Figure 2a) and b). The well-visible erosion ring has reduced the 

hardness toward the centre of the sample, while the microhardness value is much higher in the edge 

area, due to thermal gradient, as it was presented in another work; this causes unequal microhardness 

values on the surface [6]. The nitride layer depth is unequal in the erosion zone compared to the centre. 

   
Figure 2. Discoloured surface after plasma nitriding 

a) C45 – DCPN, b) C45 – ASPN, c) 42CrMo4 - biased 

3.2.  Hardness and thickness measurements 

Figures 3 and 4 show the cross-sectional hardness distribution of the different samples. The compound 

layer thickness was measured by using the distance measurement tool of the scanning electron micro-

scope. The hardness decreased considerably toward the core of the material in each condition. The sam-

ples of steel C45 show a significant hardness drop after the compound layer while the samples of steel 

42CrMo4 have smooth transition to the core hardness. This means that the diffusion zone is substantially 

larger with the alloyed steel. The effect of bias is also visible on the hardness profile. As higher percent-

age of the voltage was used as bias, higher surface hardness and thicker compound layer was formed. 

In proportion to DCPN, the use of bias cause significant increasing of hardness. 

 
Figure 3. Two hardness profiles of steel C45 

a) b) c) 
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Figure 4. Hardness profiles of steel 42CrMo4 

Scanning electron microscope was used to determine the depth of the compound layer. Figure 5 

shows the cross section of two C45 steel samples. The layer thickness was 8.6 µm with DCPN and 
5.5 µm with ASPN, respectively.  

Figure 6 shows the cross section of the 42CrMo4 type low alloy steel samples. The layer thickness 

was 15 µm with DCPN, 11.2 µm with 10% bias and 15.5 µm with 20% bias. 

  
Figure 5. Compound layer thickness of steel C45 a) DCPN, b) ASPN treated samples 

   
Figure 6. Compound layer thickness of steel 42CrMo4 a) DCPN, b) using 10% Bias,  

c) using 20% Bias treated samples 

3.3.  X-Ray diffraction analysis 

DC plasma nitriding samples were investigated by XRD analysis. Figure 7-8 contain the diffraction 

pattern of C45 and 42CrMo4. γ’ phase, as Fe4N, was formed on both sample with the same intensity 

[15]. As observed in Figure 8, magnetite is also formed on the surface. It means some oxygen is present 

in the vacuum chamber, but this rate is minimal, it didn’t influence the compound layer.  

a) b) 

a) b) c) 
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Figure 7. X-ray diffractogram of DC plasma nitrided steel C45 

 

 

Figure 8. X-ray diffractogram of DC plasma nitrided steel 42CrMo4 

 

4.  Conclusions 

The annealed C45 type carbon steel is not a typical grade for plasma nitriding. The compound layer 

thickness is formed on the surface like as other tempered steel, but the depth of the diffusion zone is 

lower than the other case.  

The effect of bias on steel 42CrMo4 was analysed with different methods. The results show that 

higher hardness can be reached with higher bias voltage. The hardness profile also shows that the alloyed 

steel has a much thicker diffusion zone than the unalloyed. With higher bias, slightly thicker compound 

layer is formed which can be examined well using SEM.  
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