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Abstract. Active screen plasma nitriding (ASPN) is a novel thermochemical surface treatment 
which has many specialities compared to the conventional direct current plasma nitriding 
(DCPN). The edge effect is eliminated, the hardness and layer thickness on the surface are ho-
mogeneously distributed. In this study, 42CrMo4 alloyed steel was treated with different screen 
sizes (screen diameter, hole size) active screen plasma nitriding. The parameters of treatment are 
similar in all cases (4 hours at 490°C and 2,2 torr). The nitrided samples were characterized by 
atomic force microscope (AFM) to analyse the roughness of the surface. The cross-section hard-
ness of the samples and the thickness of the nitrided layers were also measured. 

1.  Introduction 
The nitriding process is widely used for improving the hardness and the wear resistance of steels. DCPN 
has become a standard industrial technology, but it has some technological issues such as edge effect 
and hollow cathode effect [1–3]. Over the years, ASPN appeared in the plasma nitriding treatment pro-
cesses. The main advantages are based on the replacement of the glow discharge region. This means, 
that the plasma forms on the screen, instead of the workpiece, which causes homogeneous hardness and 
layer thickness on the surface of the specimen, therefore the issues of the DCPN are eliminated. Con-
sidering that the plasma is formed only on the screen, and the worktable is isolated from the voltage 
source, the samples are heated by radiation. ASPN also generates nitrogen mass transfer to the surfaces 
of the specimens [4, 5]. Several researchers have reported the effects of the nitriding parameters, such 
as the distance between the screen  and the sample [6–8], the effect of different screen sizes [9–11] on 
the surface roughness [12–16] and also wear and corrosion resistance improvement [17–20].  

Surface roughness parameters, which can be quantified with AFM, are frequently used as a typical 
measurement of mechanical surface properties. In our particular case, the interaction between ions and 
the sample surface during the sputtering corresponds to the variation of the roughness [21–23]. The wear 
and corrosion resistance are depending on the base material, but these material properties are not eval-
uated in this research.  

http://creativecommons.org/licenses/by/3.0
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The aim of this research is to investigate the influence of the active screen hole sizes on the layer 
thickness, cross-section hardness profile and most importantly the surface roughness of the active screen 
plasma nitrided samples. 

 

2.  Materials and methods 
In this study, tempered 42CrMo4 low alloy steel was used with the following chemical compositions 
shown in Table 1. The sample disks were 20 mm in diameter and 6 mm in thickness. The surface of the 
samples was mechanically ground with 80 to 2500-grit SiC paper and polished with 3 μm diamond 
suspension. The samples were cleaned with acetone and dried before placed in the vacuum chamber. 

Table 1. Chemical composition of materials in wt.% 

 C Si Mn P S Cr Mo 

42CrMo4 0.38 – 0.45 ≤0.4 0.6 – 0.9  ≤0.025 ≤0.035 0.9 – 1.2  1.5 – 0.3 

The active screen was made of 1.0330 type steel. The screen dimensions were 100×85 mm with 5 mm, 18 mm and 45 mm holes and the wall thickness was 0.8 mm. Figure 1 shows the schematic 
workspace of the chamber and the screens with the different hole diameters and the distance of their 
centers. All treatments were carried out using the same parameters as shown in Table 2 and following 
the same procedures. First, the chamber was pumped to a base pressure of 2×10-1 torr, then the chamber 
was flushed with argon. After the flushing, the pressure was set to 2,2 torr with the nitriding gas. The 
plasma was produced on a negatively polarized screen (cathode) and the anode (base of the chamber), 
which was held at ground potential. The temperature was monitored using an isolated K-type thermo-
couple under the workpiece. After the nitriding process, the workpiece was cooled down from the treat-
ment temperature to the room temperature. 

 

 

 

 

 

5 × 8 mm 

18 × 20 mm 

45 × 46 mm 

Figure 1.a) Schematic diagram of the ASPN chamber  
b) Hole diameters of active screens 

 

Table 2. Parameters of plasma nitriding 

Voltage 

(V) 

Current 

(A) 

Gas mixture 

N2:H2(%) 

Temperature 

(°C) 

Pressure 

(torr) 

Time 

(h) 

490 – 540 0.9 – 1.5 25:75  490 2.2 4  

a) b) 
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Scanning electron microscope (SEM) was used to examine the morphology of the samples and meas-
ure the thickness of the nitrided layer. For the microhardness measurement Buehler IndentaMet 1105 
equipment was used with Vickers head. The measuring load was 10 g for 11 s time.  Contact mode AFM 
images were taken with a Veeco (lately Bruker) diInnova scanning probe microscope (SPM) with Bruker 
DNP-10 probes, using the longest cantilever with the smallest spring constant (k = 0.03 N/m). 
The sampling rate of the image acquisition was 512x512 with 1 Hz scan rate. The obtained images were 
post-processed with the Gwyddion 2.36 software [24]. Only standard background correction was applied 
on the images to remove piezo movement and sample tilt effects. 

3.  Results and discussion 
The results of the different hole sized ASPN processes are compared with DCPN on the same nitriding 
parameters.  

3.1.  Thickness and hardness measurements 

Scanning electron microscope was used to determine the depth of the compound zone. Figure 2 shows 
the cross-sections of the samples. The layer thickness was 5.8 µm with DCPN, 3.2 µm with  5 mm holes of AS (active screen), 5.5 µm with 18 mm holes of AS and 5. µm with 45 mm holes 
of AS. The layer thickness doesn’t increase significantly when the hole size is increased over 18 mm.  
It means that there is a critical transition hole size between 5 mm and 18 mm which needs further 
investigation. The highest thickness is at DCPN treatment because of the direct heating with current. 
However, in this case the layer is not uneven, and nitride networks were founded at some place of the 
diffusion zone along the grain boundaries.  

 

  

  
Figure 2. Compound layer thickness of steel 42CrMo4 a) DCPN, b) 5 mm holes of AS,  

c) 18 mm holes of AS, d) 45 mm holes of AS treated samples 
 

Figure 3 shows the cross-section hardness profiles of the investigated samples and the maximum 
hardnesses are found in Table 3. Each curve is made from 3 different measurements on different places 

b) 

c) d) 

a) 
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of the cross-section, but all started from the layer, through the diffusion zone, towards the base material. 
The standard deviation is also shown on the diagram in every point.  

 

Table 3. Maximum hardnesses of nitrided samples 

 DCPN 
5 mm holes of 

ASPN 
18 mm holes of 

ASPN 
45 mm holes of 

ASPN 
HV0.01 1050 787 912 698 

 
From the diagram it can be read that according to the layer thickness values, the DCPN sample has 

the highest hardness. This seems good, but the DCPN method always creates an edge effect, where the 
layer is not uniform with the other parts of the sample and the hardness values near the edge effect are 
differ from the common hardness of the nitrided sample [6, 8, 20]. It is also interesting, that the  18 mm hole size screen effects the highest hardness values among the ASPN treated samples. It can 
be declared as an optimum among the other screens. This statement is also backed by the layer thickness 
measurements. The layer thickness depends on the quantity of formed nitrides. Nitrides have signifi-
cantly higher hardness than the raw material, so theoretically the thicker layers should have higher hard-
ness. However, the hardness values of the 45 mm hole size ASPN treated sample should be considered. 
A possible explanation for the lower values, is that the holes are too large in the screen, so it is not able 
to create a fully even layer where there is and open area of the screen. Although this possibility should 
be examined further. 

 
Figure 3. Hardness profile of plasma nitrided samples 

3.2.  Surface roughness measurements with AFM 
 

The surface topography of the samples was investigated by AFM, as shown in figure 4. It can be clearly 
seen that the surface roughness of the nitrided samples can even be 30-40 times higher than the polished 
reference sample (Sa is 0.75±0.05 nm for the reference, 15±0.05 nm for the DCPN sample and is be-
tween 35-40 nm for the ASPN samples, measured on 2×2 μm images). The 18 mm hole size screen 
has the highest roughness. If the dimension of the hole size is increasing, the roughness is also increasing 
until the critical transition size. Each results of previous measurements confirm the 18 mm hole size 
screen is a transition size among the hole size dimensions. It has to be noted that the surface roughness 
is not sufficient alone to conveniently characterize the effect of nitriding. As can be seen in figure 4, the 
surface after the treatment is structured in different levels. Besides the grains caused by the process, we 
can observe surface waviness with hills and valleys (especially for the DCPN treated samples in figure 
4 c)-d)), and also larger, complex structures (which resemble aggregated grains, most visible in the 
10×10 μm images of figure 4 e)-j) for the ASPN samples with larger hole diameters).  This means, that 
the treated surfaces have different characteristic features depending on the technological parameters, 
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and since these features have different spatial frequency, based on the selected scan-size, the measured 
surface roughness values will be affected differently. By using smaller scan sizes it is possible to focus 
on the grainy nitride structures. It is clear that the ASPN samples have significantly larger grain sizes 
compared to the DCPN sample, moreover, the treatment with 18 mm hole size resulted in the largest 
average grains. At larger scan sizes the mentioned complex structures define the surface roughness, 
which increases with a factor of 1.4-2.3 by increasing the scan size to 10×10 μm from 2×2 μm, depend-
ing on the samples. These structures with smaller spatial frequency could also be attributed to aspects 
of the treatment, but their detailed characterization is out of the scope of the current paper. 
 

   

 
  

 
  

 
  

 
  

Figure 4. Contact-mode 2D and 3D AFM topography images made on a)-b) polished, c)-d) DCPN 
treated, e)-f) 5 mm holes of AS treated, g)-h) 18 mm holes of AS treated, i)-j) 45 mm holes of 

AS treated samples. 

a) 

c) 

b) 

d) 

e) f) 

g) h) 

i) j) 
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4.  Conclusions 
- The highest thickness is obtained by using DCPN treatment, but the edge effect causes an une-

ven layer thickness. It seems that the ASPN process has a critical transition from the point of 
view of the screens hole sizes, which treatment influences the layer thickness.  

- Also, the DCPN treatment resulted the highest hardness in the nitrided layer. The ASPN treated 
samples have similar hardness, but their maximum hardnesses are lower than the DCPN treated 
sample. After all, the highest hardness formed when the screen with 18 mm holes was used.  

- The surface roughness of the nitrided samples can even be 30-40 times higher than the polished 
originals, depending on the process, but besides the nitride grains the ASPN samples show char-
acteristic features with smaller spatial frequency. The relation of these structures with the tech-
nological parameters should be investigated in more detail in the future. 

- The AFM investigation of the surfaces showed that the sample treated by using an  18 mm hole size screen has the highest average grain size. 
- All things considered, 18 mm hole could be considered as the optimal size of the screen for 

the ASPN process, based on the investigated samples in this research.  
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