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Abstract 

In order to study the short and long term creep behaviours of injection moulded unreinforced and glass 

fibre reinforced PP composites, tensile and creep measurements were carried out and analysed. Based on 

the linear viscoelastic behaviour and variable transformations as well as Weibull-based distribution 

characterization estimations for the tensile strength parameters and creep failure strain were determined 

and fitted to the measurements. These mathematical estimations and the relationships between the 

material model constants and the fibre content, determined by fitting, give a possibility for designers’ 

calculations at arbitrary creep load levels and fibre contents.  
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1 INTRODUCTION 

The short and long term creep behaviour is one of the most important properties of polymers used for 

engineering applications. Therefore, it has been studied for a long time in order to find suitable estimation 

methods. 

On the basis of linear viscoelastic and simple thermo-rheological behaviour, the time-temperature 

superposition principle can be used to construct the long term creep curve, called master-curve, from 

short term creep measurements performed at different temperatures and at a given load level.1-10 To 
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extrapolate the measured data or to describe the master curve mathematically, power law type 

approximations such as: Nutting or Findley6,8,11 or simple rheological models1-5,12, can give a simple 

solution. In some cases, constitutive mathematical or finite element mechanical models13,14 or molecular 

chain based structural models15 are developed to predict creep in polymers. In general, these methods can 

be used just at (or below) a given load level and in most cases, they cannot estimate the expected lifetime 

and/or the creep failure strain. 

A combined method based on the linear viscoelastic theory and non-linear variable transformations has 

been developed for estimating the long term behaviour from short term measurements, by Nagy and 

Vas16,17. This method was applied to estimate the tensile strength parameters and the creep failure strain 

of unreinforced PP at arbitrary load levels, by making use of the information provided from tensile tests 

and short term creep measurements as well as a Weibull-based distribution stochastic model.18 In this 

paper, this examination is extended for glass fibre reinforced PP composites. 

2 THEORETICAL CONSIDERATIONS 

The method used for estimating the creep failure strain values at arbitrary load levels, was developed and 

applied18 to PP earlier. 

It is based, essentially, on short term measurements, such as constant load rate tensile tests and creep tests 

for a maximum of 10 hours, performed at different load levels and a model including linear viscoelastic 

estimations and their non-linear variable transformation, similar to that used in the case of the time-

temperature superposition principle. The calculations, supported by a Weibull-based distribution 

stochastic model, are carried out using the following formulae. 

The measured tensile test curve, 2(t), can be described by a Weibull-based distribution approximation: 
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where t2B is the breaking time in tensile testing, hence 2B=2(t2B) is the strain-at-break, while ‘a’ and ‘k’ 

are the Weibull scale and modulus factors, respectively and L1B∞ is an asymptotic strain value used in the 

case of creep. 

In the case of real creep stimulus (Figure 1(a)), the primary linear viscoelastic (LVE) response, L1(t), 

estimation of the real creep curve and its Weibull-based distribution approximation16-18  (Figure 1(b)) are 

as follows: 
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where to is the uploading time in a creep tests, and L1(t,to)=2(to)=o is the creep strain load. 

Setting the time at t2B in equation (2), gives L1(t2B)=L1B(to) that yields the relationship between the LVE 

creep failure strain and uploading time: 
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Subtracting the strain loads, o, from values L1B(to) results in a nearly symmetric curve that has got a 

maximum. 
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The real creep curve, 1(t), can be estimated by a non-linear variable transformation (T) of the primary 

LVE estimation, L1(t): 
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where T1 and T2 are the component transformations (Figure 1(b)) and L11(t) is defined by equation (5). T2 

is determined to be non-linear, however, T1 can be realised in a linear form; consequently L11(t) is the 

secondary LVE estimation of 1(t) that is given by equation (6): 
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where ‘c’ is a constant and o is defined by equation (7): 
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If t1B is the real lifetime in a creep experiment, hence the creep failure strain is 1B=1(t1B), which can be 

estimated by equation (8): 
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In this paper, it will be shown that this method can also be applied to glass fibre reinforced PP polymers 

and the formulae can be extended for different fibre contents over a wide range.  

3 MATERIALS AND TEST METHODS 

An isotactic polypropylene homopolymer (melting point: 165°C; density: 0.9 g/cm3) (Tipplen H949A, 

TVK, Hungary) and its glass fibre reinforced composites were subjected to tensile tests, at constant force 

rate and creep measurements. Matrix material, 4.5 mm long chopped E-glass fibres (diameter: 13 µm) 

(SV EC 13 473, Johns Manville, Czech Republic) and maleic anhydride grafted PP (melting point: 

167°C; density: 0.905 g/cm3) (Orevac CA100, Arkema, France) of 2% GF contents were mixed in a twin-

screw extruder (Brabender Plasti-Corder, USA). Pellets with 0, 5, 10, 20, 30 and 40% glass fibre content 

were produced with zone temperatures of 190-210-210-230°C (from hopper to die). To achieve a similar 

thermal prehistory as that of the glass fibre reinforced PP composites, the unreinforced material was 

regranulated with the same settings.18 148 mm long, type 1A, dumbbell specimens of 10 mm width and 4 

mm thickness, according to the ISO 527-2 standard, were injection moulded on an Arburg Allrounder 



320C 500-170 (Germany) injection moulding machine with zone temperatures of 170-175-180-185-

190°C, 50 cm3/s injection rate and from the fibre content dependent injection (700-1000 bar) and holding 

(500-700 bar) pressures. 

For the tests, a Zwick Z-005 universal tensile testing machine (with 5 kN nominal capacity standard load 

cell) was used in constant force rate mode, where force rate was 50 N/s, until the specimen broke in 

tensile tests or the preset load level was reached in creep tests. The gauge length was 100 mm long, hence 

the elongation in millimetre equals, numerically, to the strain in percent. In the creep tests, after the 

uploading, the load was held constant for 10 hours (or until the specimen failed) and the length variation 

of the specimen was measured, using the crosshead signal. The applied load levels were determined in 10 

or 5 percent steps of the averaged breaking force measured for the given materials (neat PP, 30%GF/PP 

composite). 

4 MEASUREMENTS 

Thirty constant force rate tensile tests were performed on injection moulded dumbbell specimens. At the 

starting phase of uploading, due to the inertia of the engine system of the universal testing machine and 

the time-delay of the data collection, a zero-point error can be observed which could cause serious 

anomalies in calculating the correct mean curves. In order to obtain the correct averaged characteristics, 

the curves were shifted one by one as a function of time, until the initial tangents of the measured strain-

time and force-time curves crossed exactly the origin and some starting points were corrected to fit into 

the initial tangent as it was done in a previous work dealing with neat PP.18 The corrected results of the 

tensile measurements were averaged point by point and smoothened in the breaking section.18 The 

averaged curves, together with the breaking points, are depicted in Figure 2. 

The average values of the breaking strain and force values with their standard deviations are summarized 

in Table 1. 

In the case of the neat PP and 30% GF reinforced composites, five creep measurements were 

performed at every load level that were 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 85, 90 and 95% of the mean 



breaking force (Table 1). Each creep test lasted 10 hours or until the specimen failed. The curves were 

averaged point by point in the manner described above and smoothened, if necessary (where the specimen 

was broken during the creep measurement). 

The averaged and smoothed creep curves of the 0%GF and 30%GF reinforced PP materials can be seen in 

Figures 3 and 4, where all the creep failure points observed are also depicted. 

5 EVALUATION AND DISCUSSION 

The first step of the Weibull-based method was developed and applied in an earlier paper.18 This step was 

employed in determining the first LVE estimation of the creep failure strain values, L1(t2B), from the 

measured and averaged strain-time curve, 2(t), recorded by tensile test using equations (2) and (3). This 

was followed by fitting the right hand side of equation (3), to the curve L1B(to)=L1(t2B, to). 

5.1 Estimation of LVE creep failure strain based on Weibull distribution 

In all cases, the fitting was carried out by calculating the linear regression in a double logarithmic 

coordinate system. Figure 5 shows the LVE estimation of the creep failure strain as a function of the 

uploading time (to), determined from the measured tensile test curve and its Weibull-based approximation 

fitted by using equation (3). 

The excellent agreement with the measurements is confirmed by the high coefficients of fit (R2>0.995), 

where the fitting parameters are: a, k, and L1B∞. 

5.2 Weibull-based distribution approximation of the tensile test curve 

Knowing the fitted parameters (Table 2), the Weibull-based distribution approximation of the measured 

strain-time curves could be calculated according to equation (1). The measured and modelled tensile test 

curves are in good agreement, as can be seen in Figure 6. 

5.3 Relation between creep failure strain increment and load level 



The net creep strain that is the strain increment arising after uploading, when the load is constant, is the 

difference of the resultant strain 1(t) measured and the strain load level, o. In accordance with that, in 

Figure 7, the LVE creep failure strain increment calculated according to equation (4) is plotted for the 

materials tested as a function of the uploading time (Figure 7(a)) or the creep strain level (Figure 7(b)). 

The curves that were computed from the measurements and the Weibull-based distribution 

approximations exhibit a maximum creep strain value at about half the tensile test time (tot2B/2) (Figure 

7(a)) or about 1.0-1.5% creep load level. 

5.4 Estimation of the measured creep failure strain 

The LVE estimation of the real creep failure strain, 1B(to), belonging to uploading time, to, is 

L1B(to)=L1(t2B), where t2B is the mean value of the fracture times obtained by tensile measurements. On 

the basis of the creep measurements done at higher strain load levels, these L1B(to) values can be 

considered as upper estimations of the measured values for the unreinforced PP (Figure 8(a)), while in the 

case of the widely used 30%GF reinforced PP (Figure 8(b)), a curve defined by these modelled values, 

passes the measured values. 

Applying variable transformation T1 along the strain axis according to equations (5) to (8), provides the 

first non-linear viscoelastic approximation (NLVE) of the real creep curve (L11(t)). Numerical 

examinations16-18 showed that in this case, transformation T1 could be realised as a linear combination 

using a permanent transformation parameter, 0<c. Consequently, the result can be considered to be the 

secondary LVE estimation of the creep curve. The value of this new approximation of the creep curve set 

at t2B, estimates the real creep failure strain, 1B=1(t1B), observed at instant t1B of the creep failure, as an 

average.  

Fitting the measured values of the creep failure strain by using the least square method, the transformation 

parameter, c, came to about 0.70 for the neat PP (Figure 8(a))18 and to about 1.06 in case of the 30% GF 

reinforced PP (Figure 8(b)). In contrast to the neat PP, the secondary estimation of the creep failure strain 

for the composites is close to the primary estimations. 



5.5 Relationships between the parameters and the fibre content 

Knowing the measured values that characterize the strength and the fitted parameters of the Weibull-

based distribution approximations, it is essential and beneficial to seek suitable analytical relationships 

between them and the fibre content. 

Figure 9 shows the measured values of the mean breaking strain (y=2Bo) and calculated values of the 

maximum of the creep failure strain increment (y=1BM) and the asymptotic values of the mean creep 

failure strain (y=1B∞) as a function of the fibre content (0≤≤40%) as well as their approximation 

computed from equation (9) as the linear contribution of two exponential functions: 
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The constants (y012, y1, y2, b1, b2,) obtained from the fitting are summarized in Table 3. The coefficient of 

fit is characterized by high values (Table 3). 

The breaking time (t2B) versus fibre content relation could be described by linear regression (equation 

(10)) with good agreement (R2=0.987) in the range 0≤≤40% (Figure 10). It is also true to the time (t1M) 

belonging to the maximum value of the creep failure strain increment (R2=0.986) (Figure 10). 
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In equation (10), fitted constants translated to: T2o=33.42 s, T21=1.247 s/%, T1o=16.71 s, T11=0.6234 s/%. 

Since the tensile force is proportional to the time, because of the constant rate load mode. These linear 

approximations can also be applied to the force versus fibre content relations. 

The variation of the Weibull parameters as a function of the fibre content is visible in Figure 11. The 

scale factor increases monotonically and a similar behaviour can be assumed for the modulus factor. In 

the case of the scale factor, a double exponential function gives appropriate approximation (0≤≤40%) 

(equation (11)): 



 cbeea)(a  (11) 

where the fitted constants are a∞=189 s, b=3.15, c=0.125 and the coefficient of fit is given by R2=0.9948. 

The changes of the modulus-factor could be estimated by an exponential function (0≤≤40%) (equation 

(12)): 
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with the constants ko=0.5875, k=0.718, c=0.2 and the determination coefficient was R2=0.714 

(R=0.845). 

5.6 Assessment of the extreme behaviour of composites 

The Weibull-based characterization of the glass fibre reinforced PP composites in the tested range of fibre 

content and the analysis of the fibre content dependency of the parameters, make it possible to estimate 

any of the mechanical characteristics obtainable by tensile or creep tests at arbitrary creep load levels or 

fibre contents. On the other hand, it also gives a possibility to assess the behaviour of the composites 

outside the fibre content range tested, by using extrapolation based on the fitted parameter versus fibre 

content relationships because all of them can be defined in the whole range of the fibre content. This 

means that examining the behaviour of composites at large fibre contents, even at 100% is possible. The 

latter leads to a material that consists of short fibres only, but the adhesion operates among the fibres. For 

this extreme case, the mean breaking strain, the asymptotic values of the mean creep failure strain and the 

maximum of the creep failure strain increment may be 2B(100)2.81%, 1B∞(100)7.21%, and 

1BM(100)1,01%, while the mean breaking time and the creep time belonging to the maximum creep 

strain increment are: t2B(100)158 s and t1M(100)79 s, respectively. 

According to Bobeth19, the mean breaking strain and strength of glass fibres are about 1-4% and 2.5-3.5 

GPa, respectively. The mean breaking strain value corresponds to this value, but the mean breaking 

strength that can be calculated from the mean breaking time (t2B), the load rate ( oF =50 N/s) and the initial 



cross section area (Ao=40 mm2), 2B(100) oBo AtF /)100(2
 =198 MPa, is less by an order of magnitude. It 

seems realistic because the latter is not that of the glass fibre, but just of a short fibre system characterized 

by the adhesion between fibres and matrix and the mean fibre length.  

For the Weibull parameters, in this extreme case, the respective assessments for the scale and modulus 

factors are: a(100)189 s and k(100)0.718. They are essentially the asymptotic values of the parameters. 

6 CONCLUSION 

Injection moulded PP and glass fibre reinforced PP composite specimens were tested using tensile and 

short term creep tests in order to analyse the creep behaviour as a function of the fibre content. Using an 

LVE formula developed earlier, the creep failure strain values were estimated from the mean tensile test 

curve obtained by averaging the zero-point-corrected strain-time curves for each material tested. Weibull-

based distribution stochastic model was used to describe the variation of the mean values of these failure 

strain estimations as a function of the uploading time or the creep load level, where the parameters were 

found by fitting the measurements. This made it possible to determine the approximation for the mean 

tensile test curve as well. The linear variable transformation of the LVE strain characteristics allows 

estimations to be determined for the measured creep failure strain values in the cases of the unreinforced 

PP and 30%GF/PP composite. 

The relationships between the material model constants and the fibre content determined by fitting, give a 

possibility for designers’ calculations at arbitrary creep load levels and fibre contents. Assessments of the 

extreme behaviour at 100% fibre content could be adjudged to be real. 

The Weibull-based mathematical approximation distribution applied for unreinforced and reinforced PP 

materials, gives a good basis for developing the non-linear time-transformation necessary for the short 

term tests based on the estimation of the long term creep behaviour and the expected lifetime. 
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Table 1. Mean breaking strain and force values of the materials tested 

Material Breaking strain [%] Breaking force [N] 
Neat PP 11.17 ± 0.73 1619 ± 20 
5% GF reinforced PP 4.87 ± 0.13 1884 ± 11 
10% GF reinforced PP 3.94 ± 0.22 2350 ± 22 
20% GF reinforced PP 3.49 ± 0.17 3095 ± 49 
30% GF reinforced PP 3.22 ± 0.09 3572 ± 58 
40% GF reinforced PP 3.03 ± 0.10 4050 ± 55 

 
Table 2. The parameters of the breaking point and the Weibull-based distribution approximation 

Fibre content, GF% 0 5 10 20 30 40 
Breaking time, t2B [s] 32,4 37,7 47,0 61,9 71,4 81,0 
Breaking strain, ε2B [%] 11,17 4,87 3,94 3,49 3,22 3,03 
Asymp. failure strain, ε1B∞ [%] 12,47 8,13 7,61 8,29 7,85 6,99 
Weibull modulus-factor, k [-] 0,5875 0,6675 0,7416 0,7434 0,6938 0,6765 
Weibull scale-factor, a  [s] 8,08 43,21 71,98 139,60 179,83 186,22 
Creep strain maximum, ε1M [%] 8,23 2,24 1,44 1,13 1,15 1,16 
Time, t1M (ε1M) [s] 16,2 18,8 23,5 31,0 35,7 40,5 
tB2/a [-] 1,383 0,113 0,055 0,025 0,018 0,016 

 
Table 3. Fitted parameters of the approximations in Figure 9 

Property, y yo [%] y1 [%] y2 [%] b1[%] b2 [%] R2 [-] 

2B 2.8 6.367 2 2 18.65 0.9998 
1BM 1 6 1 1.5 20 0.9859 
1B∞ 7.2 3.9 1.4 1.5 20 0.9545 

 



Figure 1. Stimuli of real creep and tensile tests (a) and the responses with the LVE estimation of the real 

creep curve (b)18 

Figure 2. Tensile test curve of the neat PP and its composites 

Figure 3. Creep results carried out on neat PP at different tensile load levels18 

Figure 4. Creep results carried out on 30%GF/PP composite at different tensile load levels 

Figure 5. LVE estimation of the creep failure strain calculated from the tensile test measurements and 

Weibull-based distribution model fitted 

Figure 6. Averaged tensile test curves and their Weibull distribution based approximation 

Figure 7. Weibull-based distribution LVE estimation and the measured values of the creep failure strain 

versus the uploading time (a) and the strain load level (b) 

Figure 8. Measured values of the creep failure strain versus the uploading time and their primary and the 

secondary LVE estimations for the neat PP (a) and the 30%GF/PP composite (b) 

Figure 9. Measured and modelled breaking strain, asymptotic value of the creep failure strain and 

maximum value of the creep strain increment versus fibre content 

Figure 10. Measured and approximated values of the breaking time and the creep time belonging to the 

maximum of the creep strain increment versus fibre content 

Figure 11. Scale (a) and modulus (b) factors versus fibre content 
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Figure 3. Creep results carried out on neat PP at different tensile load levels18 
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Figure 5. LVE estimation of the creep failure strain calculated from the tensile test measurements and 

Weibull-based distribution model fitted 

 

Figure 6. Averaged tensile test curves and their Weibull distribution based approximation 



 

 

Figure 7. Weibull-based distribution LVE estimation and the measured values of the creep failure strain 

versus the uploading time (a) and the strain load level (b) 

 

 

Figure 8. Measured values of the creep failure strain versus the uploading time and their primary and 

secondary LVE estimations for the neat PP (a) and the 30%GF/PP composite (b) 



 

Figure 9. Measured and modelled breaking strain, asymptotic value of the creep failure strain, and 
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Figure 10. Measured and approximated values of the breaking time and the creep time belonging to the 

maximum of the creep strain increment versus fibre content 

 

Figure 11. Scale (a) and modulus (b) factors versus fibre content 


