3D nyomtatással készült termékek légáteresztő képességének vizsgálata Kmetty Á, Kovács N K, Kovács J G

> Accepted for publication in MŰANYAG ÉS GUMI Published in 2009 DOI:

3D nyomtatással készült termékek légáteresztő képességének vizsgálata

1. Bevezetés

Napjainkban a termékötlet megjelenése és a termék piaci bevezetése közt eltelt idő a termék versenyképességét nagymértékben befolyásolja. Az adott terméket design és ergonómiai szempontból kell kialakítani, további követelmény a funkciónak való teljes megfelelés. A modellezés fejlődésével a mérnökök kezébe kerültek a gyors prototípusgyártásnak nevezett technológiák, melyek tetszőleges 3D-s tervezőrendszerben előállított modellből 3D-s fizikai modellt állítanak elő (rétegről-rétegre) anyaghozzáadás útján [1].

A MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT) által kifejlesztett 3D nyomtatás alapanyaga a gipsz, a kerámia, a keményítő vagy az alumíniumpor. A porszemcsék közötti kapcsolatot ragasztóanyaggal (binderrel) valósítják meg. A modelleket porózus szerkezetükből adódóan minden esetben utókezelni kell, ami többnyire valamilyen átitatást, valamint a felületek csiszolással, esetleg bevonatképzéssel történő javítását jelenti. Ezáltal biztosítani lehet a modellek megfelelő szilárdságát és felületi minőségét [2, 3].

2. A felhasznált anyagok és előállításuk

A 3D nyomtatás alapját a por alapanyagból kötőanyag (binder) segítségével felépített modell alkotja. A 3D-s modell szeletekre bontása után a berendezés megkezdi az építkezést. Első lépésként egy vékony porréteget terít el egyenletesen a munkaasztalon, majd a nyomtató fej kötőanyagot helyez el a porréteg azon részén, ahol a modell elhelyezkedik. Ezt követően a függőleges mozgatható munkaasztal lesüllyed egy rétegvastagságnyit, majd újra egy porréteg felvitele történik. Ettől a lépéstől kezdve a folyamat periodikusan ismétlődik tovább addig, míg a teljes modell kialakul (*1. ábra*) [4].

Vizsgálatainkhoz Z CORPORATION Z810-es gyártmányú 3D nyomtatón Z102-es por és zb56-os kötőanyag (binder) felhasználásával 60, 85, 100 és 115% kötőanyag telítettségű (szaturációjú) korong alakú próbatesteket készítettünk. KMETTY ÁKOS* doktorandusz hallgató KOVÁCS NORBERT KRISZTIÁN* tanszéki mérnök DR. KOVÁCS JÓZSEF GÁBOR*

DR. KOVACS JOZSEF GABOR* egyetemi adjunktus

1. ábra. 3D nyomtató berendezés [4]

A 3D nyomtatóval készített modell porózus szerkezetű és mechanikailag gyenge, ezért utókezelési eljárásnak kell alávetni. Az elkészített darabról a felesleges port eltávolítjuk, mely a későbbi gyártáshoz felhasználható. A terméket a berendezésből kivéve nagynyomású levegővel portalanítani, majd hőkezelni (60°C, 2–3 óra) kell. Ezt követően a mechanikai és felületi tulajdonságok növelése céljából infiltráljuk (átitatás), melyre több módszer létezik. A portalanított modell átitatással történő szilárdság és felületi minőség javítását különböző infiltráló anyagokkal tudjuk elérni, amelyeket *Suwanprateeb* javaslata alapján 3 csoportba sorolhatunk [5]:

 a hőkezelés segítségével előkészített modellt akril típusú infiltráló szerrel kell átitatni,

 a ciano-akrilát típusú infiltráló szereket (hagyományos ragasztók) cseppenként kell a felületre felvinni,

viasz típusú infiltráló szerek (pl. hagyományos viasz) esetén a mintát 60°C-ra melegítjük és kb. 10 percig bemerítve átitatjuk.

Az átitatást követően különböző festési, lakkozási eljárások alkalmazhatók a felületi minőség javítására.

A próbatesteket gyantába merítjük és vákuum alatt itatjuk át, majd vizsgáljuk, ehhez viszont nélkülözhetetlen a próbatestek légáteresztő képességének ismerete. A porózus szerkezetek átitatási mélysége nagymértékben befolyásolja az elérhető mechanikai tulajdonságok mér-

348

^{*}Budapesti Műszaki és Gazdaságtudományi Egyetem, Polimertechnika Tanszék

tékét, ez a gyanta viszkozitása mellett a külső tér és a modell hőmérsékletétől, a kialakult kapillárisok átlagos átmérőjétől, valamint a légáteresztő képességtől függ.

3. Kísérleti eredmények és értékelésük

A 3D nyomtatókkal készített modellek két rétegből tevődnek össze. A külső (héj) rétegben a telítettség nagyobb, mint a modell belső (mag) rétegében, ez az alapértelmezett gyártási beállítások esetében 2:1 telítettségi arányt jelent a héjréteg javára. A porozitás csökkenésével a légáteresztő képesség is rohamosan csökken addig, míg a zérus értéket el nem éri (porozitás <10%). Zérus értéknél zárt pórusokról beszélünk. A légáteresztést befolyásoló másik fontos paraméter a porózus rendszer nedvességtartalma, ezért az adott telítettséghez kapott légáteresztő képességet célszerű egy "teljesen" száraz modellhez viszonyítani [6, 7].

Először a különböző telítettségű próbatestenk tömegét mértük, amellyel igazolni tudtuk, hogy a növekvő telítettségi értékhez növekvő átlagos tömeg párosul, ami a nagyobb mennyiségű kötőanyag (binder) felhasználásnak tulajdonítható (2. *ábra*).

2. ábra. Próbatestek tömege a telítettség függvényében

Második lépésként a próbatestek légáteresztő képességét határoztuk meg közvetett módon, fluidizáló berendezés segítségével (*3. ábra*). A lebegtető (fluidizáló) készülékbe behelyezzük a vizsgálandó korong alakú próbatestet. A készülékhez U csöves manométert csatlakoztattunk, ezzel a relatív nyomáskülönbséget mértük, a mérőfolyadék víz volt. A kompresszorral előállított levegőt szeleppel szabályoztuk és rotaméterrel mértük [8].

Minden esetben rögzítettük a laboratórium hőmérsékletét és a barométer állását (*1. táblázat*). 2 bar hálózati

3. ábra. Légáteresztő képesség mérésére szolgáló berendezés elvi vázlata

nyomáson dolgoztunk, a fojtószelep és a rotaméter segítségével különböző térfogatáramoknál mértük a próbatest alatti és az atmoszférikus nyomás különbségét. Minden próbatestnél azonos térfogatáramnál határoztuk meg a nyomáskülönbséget. A rotaméteren 200–2200 l/h térfogatáramot lehetett beállítani, így telítettségtől függetlenül minden esetben 10 mérési pontot vettünk fel, és 200– 2000 l/h között mértünk. A nyomáskülönbséget az áramlási sebesség (fluidizációs sebesség) függvényében vizsgálva jó közelítéssel pozitív iránytangensű egyenest kapunk (4. *ábra*). A különbség az egyenesek meredekségében van, ami a mérőberendezés tökéletlen szigeteléséből, illetve a próbatestek inhomogenitásából adódott.

4. ábra. Nyomáskülönbség az áramlási sebesség függvényében azonos telítettségű próbatestek esetén (Δp a nyomáskülönbség a belépő és a kilépő felület között, Pa, v_f az áramlási sebesség, m/s)

A légáteresztő képesség értékét két módszerrel határoztuk meg:

(1) Darcy módszere szerint, lamináris áramlást feltéte-

					A meressorozat	kiindulo adatai		
Barométer kitérése Hgmm	Higany sűrűsége kg/m ³	Nehézségi gyorsulás m/s ²	Atmoszférikus nyomás Pa	Víz sűrűsége kg/m ³	Áramló közeg viszkozitása Pa•s	Labor hőmérséklet °C		
Atmoszférikus nyomás meghatározása 1. mérési sorozat szerint								
759	13 600	9,81	101 262,744	1000	1,85.10-5	23,5		
Atmoszférikus nyomás meghatározása 2. mérési sorozat szerint								
751	13 600	9,81	100 195,416	1000	1,80.10-5	21,5		

1. táblázat. A méréssorozat kiinduló adatai

lezve a porózus anyagok légáteresztő képességére levezetett egyszerűsített összefüggést alkalmaztuk [9]:

$$u \cdot \rho = \frac{\kappa}{v} \frac{(p_b - p_a)}{X} \tag{1}$$

ahol *u* az áramló közeg sebessége [m/s], ρ az áramló közeg sűrűsége [kg/m³], v az áramló közeg kinematikai viszkozitása [m²/s], (*p*_b-*p*_a) nyomáskülönbség a belépő és a kilépő felület között [Pa], *X* az átáramlás hossza [m] (5. *ábr*a).

5. ábra. A Darcy törvény értelmezése

A rotaméterrel különböző térfogatáramokat állítottunk be és mértünk, ezért a Darcy-féle összefüggést tovább alakítottuk:

$$Q = \frac{\kappa \cdot A}{\mu} \frac{(p_b - p_a)}{X}$$
(2)

ahol *Q* a térfogatáram [m³/s], κ a légáteresztő képesség [m²], *A* az áramló közegre merőleges keresztmetszet [m²], (p_b – p_a) nyomáskülönbség a belépő és a kilépő felület között [Pa], μ az áramló közeg viszkozitása [Ns/m²], *X* az átáramlás hossza [m].

Porózus rendszert vizsgálva előfordulnak olyan esetek, melyeknél az áramlás nem tisztán lamináris, hanem molekuláris áramlás is jelen van. Ilyenkor a Darcy törvényt nem alkalmazhatjuk, ezért a szakirodalomból a betonra, mint porózus szilárd anyagra levezetett összefüggést használtuk fel.

(2) Amennyiben a nyomást állandónak tekintjük, úgy a porózus modell légáteresztő képességét a Hagen-Poiseuille összefüggéssel határozhatjuk meg [6]:

$$\kappa_{app} = \frac{2QP_{atm}L\mu}{A(P^2 - P_{atm}^2)}$$
(3)

ahol κ_{app} a légáteresztő képesség [m²], Q az áramló kö-

zeg térfogatárama [m³/s], A az áramló közegre merőleges keresztmetszet [m²], L az áramlás hossza [m], μ az áramló közeg viszkozitása [Ns/m²], P_{atm} atmoszférikus nyomás [Pa], P abszolút nyomás [Pa].

A betonra vonatkozó számítási eljárás és a Darcy törvény alkalmazása között 2–3 nagyságrendnyi eltérés mutatkozik, ez a jelentős különbség az áramlás fajtájának tulajdonítható, ami minden próbatesten megmutatkozott telítettségi értéktől függetlenül (2. táblázat).

A 6. *ábra* alapján kimutatható, hogy a vártnak megfelelően minél tömörebb (nagyobb telítettségű) a próbatest, annál kisebb a légáteresztő képessége, ami a következő összefüggéssel írható le:

$$\kappa = c_1 \cdot e^{c_2 \cdot s} \tag{4}$$

ahol κ a légáteresztő képesség [m²], *s* a telítettség mértéke (szaturáció) [%], *c*₁ anyagra jellemző konstans [m²], *c*₂ anyagra jellemző konstans [–].

6. ábra. Légáteresztő képesség a telítettség függvényében (Darcy törvénnyel és a betonra vonatkozó összefüggéssel)

2 mm vastag próbatestek esetén $c_1 = 4.10^{-8}$, míg $c_2 = -0,0368$ adódott.

4. Összefoglalás

A 3D nyomtatással készített próbatesteknél a növekvő telítettség növekvő tömeggel párosul, ami a kötőanyag nagyobb arányban történő felhasználásának tulajdonítható. A Darcy-féle lamináris áramlást feltételező egyszerűsített légáteresztő képesség, és a betonra vonatkozó nem csak lamináris, hanem molekuláris áramlást is figyelembe vevő légáteresztő képesség értékek között 2–3

		8	8	
Telítettség	Légáteresztő képesség (betonra)	Légáteresztő képesség szórása (betonra)	Légáteresztő képesség (Darcy)	Légáteresztő képesség szórása (Darcy)
%	m^2	%	m ²	%
60	4,1496.10-12	1,2175.10-13	4,1340.10-9	1,1516.10-10
85	2,0973.10-12	3,3781.10-14	2,0816.10-9	2,9013.10-11
100	8,1006.10-13	1,5643.10-14	7,9595.10-10	2,2989.10-11
115	6,2712.10-13	3,0250.10-14	6,1410.10-10	3,7281.10-11

Különböző telítettségen számított légáteresztő képesség értéke és szórása

350

2. táblázat.

nagyságrendnyi a különbség, de jellegre mindkét esetben a növekvő telítettségi értékhez csökkenő légáteresztő képesség járul.

A közlemény a Bolyai János kutatási ösztöndíj támogatásával készült. A szerzők köszönetet mondanak a Varinex Kft.-nek a 2810 típusú 3D nyomtató rendelkezésre bocsátásáért.

Irodalomjegyzék

- Dunai, A.; Macskási, L.: Műanyagok fröccsöntése, Lexica Kft., Budapest, 2003.
- [2] Kovács, J. G.: Terméktervezés gyakorlata a polimertechnikában, Előadás jegyzet.
- [3] Falk, Gy.: A 3D Printing térhódítása, Műanyag és Gumi, 44/3, 107–109 (2007).

- [4] Upcraft, S.; Fletcher, R.: The rapid prototyping technologies, Assembly Automation, 23/4, 318–330 (2003).
- [5] Suwanprateeb, J.: Comparative study of 3DP material systems for moisture resistance applications, Rapid Prototyping Journal, 13/1, 48–52 (2007).
- [6] Abbas, A.; Carcasses, M.; Ollivier, J. P.: Gas permeability of concrete in relation to its degree of saturation, Materials and Structures, Materiaux et Constructions, 32, 3–8 (1999).
- [7] Kryuchkov, Yu. N.: Analysis of the gas permeability of porous powder materilas, Powder Metallurgy and Metal Ceramics, 37/5–6, 283–286 (1998).
- [8] Váradi, S.: Környezettechnikai mérések 1, Portechnikai mérési útmutató.
- [9] Brouwers, H. J. H.; Gilding, B. H.: Steam stripping of the unsaturated zone of contaminated sub-soils: The effect of diffusion/dispersion in the start-up phase, Journal of Contaminant Hydrology, 83, 1–26 (2006).