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Abstract 

Three different nano- and micro-sized ceramic powders (boron-nitride (BN), talc and 

titanium-dioxide (TiO2)) in 30 vol% have been compounded with a polypropylene (PP) 

matrix. Scanning electron microscopy (SEM) shows that the particles are dispersed smoothly 

in the matrix and larger aggregates can not be discovered. The cooling gradients and the 

cooling rate in the injection-molded samples were estimated with numerical simulations and 

finite element analysis software. It was proved with differential scanning calorimetry (DSC) 

measurements that the cooling rate has significant influence on the crystallinity of the 

compounds. At a low cooling rate BN works as a nucleating agent so the crystallinity of the 

compound is higher than that of unfilled PP. On the other hand, at a high cooling rate, the 

crystallinity of the compound is lower than that of unfilled PP because of its higher thermal 

conductivity. The higher the thermal conductivity is, the higher the real cooling rate in the 

material, which influences the crystallization kinetics significantly. 
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1. Introduction 

In the last decade, composite materials with a thermoplastic polymer matrix get more and 

more attention in research and industrial applications. With the application of composite 

systems, not only the mechanical properties, but also the thermal properties of polymeric 

matrices can be improved. One of the important thermal parameters of polymers is thermal 

conductivity, which can be enhanced by micro- and nano-sized fillers or reinforcements [1-3]. 

If the dielectric behavior of the composite is an important requirement, thermally conductive 

but electrically non-conductive particles should be applied. Ceramic fillers, such as boron 

nitride, aluminum oxide, aluminum nitride, silica, talc and many others can be used in such 

cases [1, 2, 4]. 

These kinds of polymer composites are utilized mainly in electronics, where it is important to 

both increase the power and decrease the size of the components at the same time. In some 

instruments, such as LED lamps or integrated memory chips, fast and efficient heat 

dissipation is a key issue, because the generated heat can raise the temperature of the device 

over its thermal stability limit. Over the critical temperature lifespan decreases significantly or 

the instrument may be damaged [4]. 

Many publications investigated the influence of the filler fraction on thermal conductivity and 

mechanical properties, but few of them examined crystallinity, thermal parameters, cooling 

behavior and their relationship. One of the most important physical parameters of semi-

crystalline polymers is their degree of crystallinity, as it determines their mechanical 

properties. Thus the modulus of elasticity, yield stress and impact resistance increase 

gradually with crystallinity [5-7]. During injection molding crystallinity and crystalline 

morphology are critical parameters, because they are strongly influenced by processing 

conditions, including molding temperature, cooling rate, holding time and temperature [8]. 

Among others, there is a correlation between cooling rate and crystallinity. The degree of 

crystallinity is proportional to the cooling rate, and it can be determined by DSC 

measurements [8, 9]. Furthermore, the fillers added to increase thermal conductivity can work 

as an effective nucleating agent. Thus they can increase the number of crystal nuclei. [10].  

Although widespread and comprehensive research has been conducted on nucleating agents, 

so far the adverse effect of the increased cooling rate of the conductive polymers on the 



nucleating efficiency of the fillers in the molding process has not been investigated. In this 

study we examine the effects of different ceramic fillers on the cooling rate and thermal 

properties of polypropylene-based compounds. Our work shows that the thermal conductivity 

of the fillers has great influence on the cooling rate and crystallinity of the compounds. The 

measured parameters and relationships can be used to improve simulation software to make 

the calculations and the results more reliable and precise, making the results closer to reality. 

 

2. The experiments 

2.1 Materials 

H145 F homo-polypropylene was purchased from Tiszai Vegyi Kombinát Nyrt. (Hungary). 

The polypropylene matrix was compounded with different thermally conductive fillers, such 

as hexagonal boron-nitride (BN), talc and titanium-dioxide (TiO2). Plate-like hexagonal 

boron-nitride grade A 01 powder was obtained from H.C.Starck GmbH (Germany). The 

density and the thermal conductivity of the BN powder are 2.2 g/cm3 and 60-65 W/mK 

respectively [11]. Plate-like talc powder was supplied by Novia Kft. (Hungary). Its thermal 

conductivity coefficient is about 2-10 W/mK [12] and its density is 2.7 g/cm3. The titanium 

dioxide (TiO2) was also obtained from Novia Kft. (Hungary). According to literature, the 

thermal conductivity of the TiO2 bulk is 5-7 W/mK [13]. 

2.2 The preparation of the samples 

In this study the surface of the fillers was not treated. The compounds were prepared with 30 

vol% filler content with a LabTech Scientific extruder and granulated with a LabTech 

pelletizer. The 80x80x2 mm sized samples were injection molded with an Arburg Allrounder 

370S 700-290 injection molding machine (Table 1). 

2.3 Measurement and calculation methods 

The thermal conductivity of the samples was measured with the hot plate method [14]. A 

10°C temperature difference was generated between the hot and the cold side and the result 

was calculated at 55°C. The results were calculated with Fourier’s law (Eq. (1)) [15, 16]. 

),(),( txTtxq    (1) 

A DSC Q2000 (TA Instruments) differential scanning calorimeter was used to analyze the 

specific heat, the crystallization temperature and the crystallinity of the samples. 3-5 mg 

samples were cut off from the centre of the injection molded plates and placed into pans. The 

measurements consist of three phases: heating to 225°C from 25°C, cooling back to 25°C and 

heating to 225°C again. The first heating is used to measure the effect of the injection 



molding process, as in the next two phases crystals are created and melted during a controlled 

process (a heating and cooling rate of 10°C/min). The degree of crystallinity (X) was 

determined from the exothermic and the endothermic peaks with Eq. (2), which takes into 

account the filler fraction of the compound [8, 17].  
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where ΔHm is the enthalpy at melting point, ΔHcc is the enthalpy of cold crystallization, ΔHf is 

the enthalpy of the fully crystalline polymer and φ is the mass fraction of the filler. According 

to the literature, the theoretical value of ΔHf of polypropylene is 165 J/g [18]. 

The temperature distribution in the specimen can be described with the heat diffusion 

equation (Eq. (3)) [19]. This differential equation was solved numerically by a using finite 

difference equation (explicit difference method) (Eq. (4)). This numerical method describes 

the cooling process in the substance using a one-dimension model without an inner heat 

source [15]. 
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where T is the temperature, x and t indicate the place and time, ∆x and ∆t are the distance and 

time step in the calculation, and α is the thermal diffusivity. Thermal diffusivity was 

calculated as the proportion of the thermal conductivity and the product of the density and the 

specific heat capacity (Eq. (5)). Using temperature-dependent values in the equations, more 

accurate results can be achieved. 
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where ρ is the density, cp is the specific heat and λ is the thermal conductivity. 

In an actual process the polymer shrinks and warps during cooling. Therefore, thermal contact 

resistance (Rs) varies during the cycle. Several studies have examined the thermal contact 

resistance between the polymer and the metal surface, in which the mean value of resistance 

is 5∙10-4 m2K/W [20, 21]. Contact resistance induces a temperature difference between the 

polymer (Tps) and the mold surface (Tms). Eq. (6) gives the temperature field which is the 

input data of the explicit difference method. 

mssps TtqRtT  )()( . (6) 



The heat flux (q) was calculated from the temperature drop (ΔT) in the substance between two 

discrete points (Δx) (Eq. (7)), according to Fourier’s law. This heat also flows through the air 

gap between the surface of the mold and the polymer. 
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The cooling rate of the sample was calculated from the temperature field, which was obtained 

from the explicit difference method. The derivation of the time-temperature curves at discrete 

distances from the surface gives the cooling rate (vcool) as a function of the time and distance 

(Eq. (8)). 
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The cooling time required to reach the ejection temperature was determined with three 

different methods: simulation; the explicit difference method and an empirical formula (Eq. 

(9)) [22]. The simulations were performed with the MoldFlow injection molding simulation 

software. 
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where s is the thickness of the sample, Tme is the melt temperature, Tmo is the mold 

temperature and Te is the ejection temperature. 

 

3. Results and discussion 

3.1 SEM analysis of the fillers and compounds 

The SEM analysis of the fillers shows that boron nitride and talc have a plate-like shape. The 

average size of BN particles is under 10 ȝm but particles in the nanometer range can also be 

found but in the aggregates. The thickness of the plates is also in the nanometer range. Talc 

has a higher average particle size, between 5 and 50 ȝm, while the thickness of the particles is 

also in the micrometer range, although the individual plates are thinner than one micrometer. 

In spite of the bigger size of talc particles, the final material could contain much smaller 

particles, as talc is a very soft material, and thus high shear during the molding process can 

break them. The titanium dioxide particles are spherical and their size is about 100 to 300 nm 

according to SEM analysis (Fig. 1). 



 
1. Figure SEM pictures of the powders (a – boron nitride; b – talc; c – titanium dioxide) 

 

The SEM pictures of the fracture surfaces (Fig. 2) show that the fillers were smoothly 

dispersed in the matrix material. Although filler content was quite high (30 vol%), larger 

aggregates could not be found. 

 
2. Figure SEM pictures of the fracture surface of the compounds (a – PP + 30 vol% BN; b – PP + 30 vol% 

talc; c – PP + 30 vol% TiO2) 

 

The particles can form a conductive network in the compound and this way improve thermal 

conductivity more efficiently. The compound is densely packed, interparticle distance is 

smaller, and thus the particles can come into contact with each other. 

3.2 Specific heat 

The three stages of the specific heat measurement (heat-cool-heat) are plotted in Table 2. 

Only unfilled PP shows a significant difference between the first and the second heating, 

which is about 500 J/kgK. In the case of the filled materials there is no considerable 

difference between the two measurements. In the neat PP the first heating phase refers to the 

injection molding process, and the second heating to the controlled cooling caused behaviors. 

In the filled PP this effect is not significant, because there are no changes in the fillers at this 

low temperature range, therefore the high filler content leads the process. On the other hand, 

there are significant differences between the values measured in the heating and the cooling 

phase. The specific heat measured during the cooling phase has to be used for calculations, as 

Eq. (4) describes a cooling process.  

3.3 Thermal Conductivity 



Fig. 3 presents the through-plane thermal conductivity values of the injection molded plates.  

 
3. Figure Thermal conductivity of PP and its compounds with 30 vol% talc, BN and TiO2 

 

All the three fillers increase the thermal conductivity of the composite material. Talc and 

titanium-dioxide have only a minor effect; the coefficient increased from 0.25 W/mK to 0.59 

and 0.64 W/mK respectively. When boron-nitride was used, thermal conductivity increased to 

1.14 W/mK. The increased thermal conductivity leads to faster cooling of the injection 

molded samples, which in turn shortens cooling time and cycle time. 

3.4 Cooling rate 

The cooling gradients were determined as a function of the time and positions across the 

thickness using the explicit difference method. In accordance with the injection molding tests, 

a melt temperature of 200°C and a mold temperature of 40°C were used in the calculations. 

The specific heat and as a result the calculated heat diffusivity varied as a function of the 

temperature. The temperature was uniform through the whole specimen at the initial 

calculation step, then it started to cool down to 40°C. The cooling gradients (Fig. 4) show that 

unfilled PP has the lowest cooling rate. When 30 vol% of filler is used, cooling time can be 

shortened significantly.  



 
4. Figure Cooling gradients of the samples (a, PP; b, PP + 30 vol% talc; c, PP + 30 vol% TiO2; d, PP + 30 

vol% BN) 

 

The maximum ejection temperature of polypropylene is about 100-110°C. It means that if the 

temperature is lowered below this value, the polymeric parts are rigid enough to be removed 

from the mold without any damage [23]. With 30 vol% of TiO2 the cooling time to reach 

ejection temperature decreased by 35%, with talc it decreased by 50% and in the case of BN 

by more than 70%. 

The time to reach ejection temperature in the cross section is shown in Fig. 5. From the 

cooling gradients the cooling rates can be calculated. 

 
5. Figure The time to reach ejection temperature in the cross section 

 



Fig. 6 shows the average cooling rate of the material between the injection temperature 

(200°C) and the ejection temperature (100°C) as a function of position across the thickness.  

 
6. Figure The average cooling rate between the injection and ejection temperatures 

 

On the surface a very high cooling rate can be observed, but it decreases rapidly towards the 

center. In the middle of the PP sample the average cooling rate is 22.6°C/s. With 30 vol% of 

talc the cooling rate is 45.8°C/s, with TiO2 it is 57.1°C/s and with BN it increases to 75°C/s. 

These significant differences in the cooling rates can be explained by the differences in 

thermal conductivity (F). Moreover, there is a strong linear correlation between the cooling 

rate and thermal conductivity (Fig. 7.). 

 
7. Figure Relationship between the cooling rate and the thermal conductivity of the compounds 

The explicit difference method was compared to other cooling time calculation methods 

(empirical calculation and MoldFlow simulation). The explicit difference method shows good 

agreement with the Mold Flow simulation, especially in higher thermal conductivity ranges 

(Fig 8.).  



 
8. Figure Time to reach ejection temperature in the compounds 

The empirical method gives a lower estimation of the real processes, because this equation 

uses an average thermal diffusivity value and approximates the gradient with a logarithmical 

curve.  

3.5 Thermal characterization 

The thermal characterization of the compounds was performed with DSC apparatus. During 

the measurement the crystallization peaks of the compounds were observed. According to Fig. 

9 and Table 3, there is a remarkable shift in the crystallization peaks. The biggest difference is 

about 13°C using 30 vol% of BN. It means that the crystals can be created at a higher 

temperature, and the polymer material has a longer time for crystallization. 

 
9. Figure Shift of the crystallization peak as a function of the different fillers 

In the DSC measurements, the thermal history of the materials was erased during the first 

heating, then the crystals were created and melted under controlled circumstances with a slow 

cooling and heating rate. This method is widely used when a small amount of fillers is added 

to the polymer matrix. This way the effect of the fillers on crystallinity can be compared. On 

the other hand, in a real process, such as injection molding, the cooling rate is more than 

15°C/s, thus the polymers have less time for crystallization. The higher the cooling rate is, the 

lower crystallinity will be. Process-induced crystallinity can be obtained from the first heating 

scan of DSC measurements. 

The results of the crystallinity measurements are shown in Fig. 10.  



 
10. Figure Crystallinity of the compounds in the first and second heating phase 

It can be seen that the degree of crystallinity increased with the adding of fillers when the 

heating and cooling rate was 10°C/min (the second heating and the first cooling). Of the three 

filler types, the best nucleating agent is titanium dioxide. It increased the crystallinity of PP 

from 63% to 71%. BN or talc only increased it to 65-66%. Injection molding-induced 

crystallinity was determined from the first heating phase. It is noticeable that crystallinity is 5-

15% lower than after recrystallization. With 30 vol% boron-nitride crystallinity is only 64.2%, 

which is lower than in the case of unfilled polypropylene (68.1%). This drop can be explained 

by higher thermal conductivity. While the unfilled polypropylene cooled slowly in the mold 

after injection, the 30 vol% boron-nitride filler increased thermal conductivity and also the 

cooling rate. Thanks to the higher cooling rate, lower crystallinity can be obtained. It means 

that the nucleating effect of the boron-nitride was not enough to compensate for the effect of 

thermal conductivity. 

The crystallinity of talc and BN filled compounds were investigated as a function of the filler 

content (Fig. 11).  

 
11. Figure Effect Crystallinity of the compounds as a function of the talc (0, 10, 20 and 30 vol%) and BN 

(0, 4.4, 12.1, 20 and 30 vol%) content 

Up to 30 vol% talc (Ȝ=0.58 W/mK) crystallinity increased monotonously, which shows a 

good nucleating agent behavior. On the other hand, adding boron nitride to the PP matrix, first 

crystallinity increases and above a threshold it decreases. This limit value is 10 vol%, where 



the thermal conductivity of the compound is 0.55 W/mK. Above 10 vol% BN fraction, the 

high thermal conductivity results in faster cooling during injection molding, thus crystallinity 

decreases. 

4. Conclusion 

This study focused on the molding process-induced thermal properties of filled 

polypropylene. Compounds filled with 30 vol% ceramic powder (talc, titanium-dioxide, 

boron-nitride) were produced with extrusion and 2 mm thick samples were made with 

injection molding. The thermal conductivity of the polypropylene was determined as 0.25 

W/mK, while the thermal conductivities of compounds filled with talc, TiO2 and BN were 

0.59, 0.64 and 1.14 W/mK respectively. To characterize the cooling phase under injection 

molding circumstances, the cooling gradients and the cooling rates were determined with the 

explicit difference method. The input data were the thermal conductivity, the density and the 

specific heat curve of the materials. The results show that thermal conductivity has a great 

influence on the cooling rate. The higher the thermal conductivity is, the higher the cooling 

rate is. On the other hand, the cooling rate influences the crystallinity of the polymers. Thus 

after injection molding, highly filled polymer compounds with a high thermal conductivity 

have lower crystallinity than the unfilled polymer, in spite of the fact that the filler is an 

efficient nucleating agent. 
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