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Abstract Constitutive description of deformations in technical textiles mostly requires some 

highly nonlinear material law due to the interaction between the orthotropic yarns and the effect of 

the matrix. Phenomenological models aim to garb the overall (macro level) behavior required for 

engineering purposes. This paper introduces a new, two-dimensional phenomenological model for 

technical textiles accompanied by a data acquiring strategy to determine the material parameters 

involved in the model. It handles the nonlinear stress-strain relation observed in uniaxial tests and 

take the interactions in the two, orthogonal directions into account. As we aim to introduce a 
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solution applicable at the service level of the loads, our model is inherently elastic, no time 

dependent or plastic behavior are introduced and no cyclic loading is taken into consideration. The 

model can be solidly fit to the measured data. 

Keywords: technical textiles, biaxial test, nonlinear constitutive law 

1. Introduction 

The observed deformation of textile composites under in-plane loading is 

nonlinear for several reasons: geometrical nonlinearity can be associated with the 

woven microstructure of the textile and the yarns contribute in a significant 

material nonlinearity. Furthermore - for specific materials - substantial time-

dependent deformations may occur. Because of some nonlinear phenomena, 

namely plastic yield and time-dependent deformation, the cyclic loading exhibit 

significantly different stress-strain curves compared to the initial deformation. 

 

This paper is intended to describe a data acquiring strategy and a novel nonlinear 

elastic constitutive model which takes the interaction between the two orthotropic 

directions into account. 

 

The new phenomenological model aims to provide a fairly accurate method for 

the structural analysis of textile materials at the service level of the loads. The 

ultimate failure of the structure is not in our interest. The widely used partial 

(safety) factors for technical textiles limit the service stress level to 30-40 % of the 

ultimate strength of the material. To reduce the effect of plasticity and viscous 

deformations, PTFE coated glass fiber woven textile was used in short-time 

uniaxial and biaxial tests. In our work we focus on the first loading and exclude 

cyclic loading. Nevertheless, the new model can be easily applied for data 

obtained from cyclic measurements. 

 

The glass fiber has an almost linear elastic behavior and essentially no viscous 

deformation at the targeted (moderate) stress level. Nevertheless, the measured 

data reflects the nonlinear effect of the PTFE coating. 

 

Recent methods in the literature are based on the adequate involvement of the 

material's microstructure (Haan et al. 2001, Ballhause et al. 2005, Durville 2005). 

They construct the model from feasible components at the micro level via detailed 

constitutive laws of the yarns, the coating matrix and the interactions between 

these elements. The phenomenological model at the continuum level is reached 

via some homogenization technique or an appropriate strain-energy function is 

defined (dell'Isola and Steigman 2015) that adequately describes the behavior of 

the fabric. Nevertheless, a detailed description of the internal geometry is also 

essential in this case. A shortcoming of such approaches is the high computational 

cost arising from the detailed description. Therefore, these methods are most often 

impractical for engineering problems. 

 

There are phenomenological methods that describe the overall (macro) nonlinear 

behavior of the continuum by adequate nonlinear functions. Nevertheless, such a 

non-linear relation can be derived for models based on the microstructure 

mentioned above. However - as long as the elastic range is treated - a direct fit for 

macroscopic data might be preferable, since the assessment of numerous material 

parameters and the detailed geometry (needed for modeling at the fabric level) can 
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be omitted. Apparently, there are several, solely macroscopic models in the 

literature. The dense net method uses two independent functions to be fitted to the 

uniaxial measurements in the two orthotropic directions (Ambroziak and 

Klosowski 2005, 2014). It uses nonlinear functions to represent the different 

slopes of the stress-strain curves (Chaboche 1989, Bodner and Partom 1975), 

however it lacks to handle the interaction between the two orthogonal yarn 

directions, practically there is no transversal interaction in the model. Spline 

methods (Day 1986, Bridgens and Gosling 2004, 2005) define the surface for the 

stress as a function of the two orthogonal elongations. By this method an accurate 

interpolation can be achieved to the measured data and the transversal interaction 

is accounted, too. Nevertheless, the usage of the power equations of the spline can 

lead to divergence in the nonlinear analysis because the power equations are 

hectic for extrapolation. During the nonlinear analysis of membrane extremely 

high strains occur, thus unreliable extrapolation should be avoided. 

 

Our approach can be interpreted as a generalization of the classical elastic 

constitutive law for an orthotropic medium in two dimensions (Lampiere 1968, 

Sipos and Fehér 2016). To provide a better fit with the measured data in uniaxial 

and biaxial tests, exponential functions are used and the interaction of the two 

directions is modeled with a power function. The new elastic model gives a good 

approximation at the service load level of the structure for the initial deformations 

and presents a proper extrapolation to have a stable numerical analysis. This is 

necessary to avoid the instability in the numerical analysis of the structure at 

stress localization zones (Sadd 2009). 

2. Model development 

The technical textiles are built of woven fibers covered by matrix. The present 

paper use the experimental data measured on glass fiber covered PTFE. The 

specific material was made by simple chain woven technic. 

 

The fibers inside the textile form a complex 3D geometry. The interaction 

between the fibers represent highly nonlinear stress-strain function even if the 

original fiber was almost linear elastic. The initially curved and slack fibers under 

stress become more strait and taut and stiff. The stress-strain diagram become 

steep after a moderate slant initial period (Fig. 1. and 2.). 

 

Our goal is to develop a phenomenology model represent the material behavior 

above. 

2.1. Uniaxial behavior 

A realistic model should simultaneously explain the material response in uniaxial 

and biaxial tests. First, we introduce the terms reproducing the uniaxial behavior. 

Nevertheless, the uniaxial response is tested in the wrap and weft directions 

separately. Two typical uniaxial tensile test curves are depicted in Fig. 1 and 

Fig. 2 in the warp and in the weft directions, respectively (These curves are parts 

of the series of the measurements described in Section 3 in detail. All parameters 

of the material and the measurement method is described there.).  

 

In all measurements, we determine the engineering stress: the strain is related to 

the original length and the stress is calculated by the original area of the cross 
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section. In nonlinear calculations usually the Lagrange strain is used with the 

Second-Piola stress tensor to model large strains. In the case of membrane 

structures higher accuracy is required: the Biot strain and Cauchy stress tensors 

are practical (Hegyi et al. 2005, Hegyi 2006). However, the Biot strain is 

practically identical to the stretch tensor; we take advantage of this observation in 

the parameter analysis. During the analysis of the experimental data the stretch 

and the engineering stress can be easily calculated.  

 

 

Figure 1. Measured stress, a typical stress-strain curve of a uniaxial tensile test in the warp 

direction. 

 

 

Figure 2. Measured stress, a typical stress-strain curve of a uniaxial tensile test in the weft 

direction 

 

It is worthy to note, that the stress-strain curves above hints to an inflection point 

along the curve. This feature seems to be typical among technical textiles. To 

reproduce the inflection in the uniaxial response a reasonable choice is a linear 

combination of two exponentials: 

 

𝜎𝑤,0 = 𝑓𝑥1(𝜀𝑤) + 𝑓𝑥2(𝜀𝑤) = 𝑎1𝜀𝑤(1 − 𝑒−𝑎3𝜀𝑤
2
) + 𝑎2𝜀𝑤(𝑒−𝑎4𝜀𝑤

2
), (1) 

𝜎𝑓,0 = 𝑓𝑦1(𝜀𝑓) + 𝑓𝑦2(𝜀𝑓) = 𝑏1𝜀𝑓 (1 − 𝑒−𝑏3𝜀𝑓
2

) + 𝑏2𝜀𝑓 (𝑒−𝑏4𝜀𝑓
2

) (2) 
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where σw,0 [N/mm] is the stress in the warp direction, εw [%] is the strain in the 

warp direction and a1, a2, a3 and a4 are material parameters, where a3 and a4 are 

dimensionless and a1 and a2 are in [N/mm] Similarly, σf,0 and εf denote the stress 

and strain in the weft direction, respectively. This expression produces a fair fit to 

the measured stress-strain diagrams: observe the resemblance of the σw curve in 

Fig. 3 (with parameters a1=2,0 –a2=0,5 – a3=0,5 – a4=10) and the output of the 

measurements in Figures 1 and 2. 

 

 

Figure 3. Calculated stress-strain diagram plotted by exponential functions. 

2.2. Interaction between the two yarn directions 

Any elastic constitutive law should satisfy the energy conservation law. It is well 

known, that this requirement manifests in a symmetric stiffness matrix. In other 

words, the following derivatives must be equal: 

 

𝜕𝜎𝑤

𝜕𝜀𝑓
=

𝜕𝜎𝑓

𝜕𝜀𝑤
. (5) 

 

where w and fare the stress in the warp and fill directions, respectively. 

Nevertheless, in the general case w and fare functions of two variables, εw and 

εf. 

 

We seek a form that satisfy Eq. 5, and that is in accordance with the measured 

stresses in the biaxial tests and the transversal deformations in the uniaxial tests. 

This latest is an inherent consequence of the microstructure of the material. In 

specific, the yarns of textile composites are woven, they mutually bend each 

other. The matrix (PTFE in our samples) around the yarns are much softer than 

the yarns itself, thus the matrix contributes to the total deformation, too. This 

special arrangement has a significant effect on the transversal deformations.  

 

For uniaxial tests Figs. 4 and 5 depict the measured transversal deformation. 
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Figure 4. Transversal deformation, uniaxial test, warp loading. 

 

 

Figure 5. Transversal deformation, uniaxial test, weft loading. 

 

The trend of the transversal deformations in the uniaxial tests (Fig. 4. and 5.) 

makes it clear that the terms expressing interaction between the two directions 

cannot be linear. This means, a simple orthotropic response is not sufficient in our 

case. With a slight generalization of the orthotropic model one arrives to the 

following expression (it includes the terms from Eqs. (8) and (9)): 

 

𝜎𝑤 = 𝑎1𝜀𝑤(1 − 𝑒−𝑎3𝜀𝑤
2
) + 𝑎2𝜀𝑤(𝑒−𝑎4𝜀𝑤

2
) + 𝑐1𝜀𝑓(𝜀

2
𝑤𝜀2

𝑓)
𝑐2, (8) 

𝜎𝑓 = 𝑏1𝜀𝑓 (1 − 𝑒−𝑏3𝜀𝑓
2

) + 𝑏2𝜀𝑓 (𝑒−𝑏4𝜀𝑓
2

) + 𝑐1𝜀𝑤(𝜀2
𝑤𝜀2

𝑓)
𝑐2. (9) 

 

 

Figure 6. Calculated transversal deformation for uniaxial loading. 
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Figure 6 represent the calculated curve of the transversal deformation with 

parameters a1=1, a2=1, a3=1, a4=1, c1=1, c2=0,25. 

 

Note, that c1 and c2 are material parameters. With a1=a3=a4=b1=b3=b4=c2=0 we 

obtain the classical linear model of an orthotropic medium. Nevertheless, the 

symmetry condition in Eq. (5), and thus the energy conservation criteria is 

satisfied: 

 

𝜕𝜎𝑤

𝜕𝜎𝑓
=

𝜕𝜎𝑓

𝜕𝜎𝑤
= 2𝑐1𝑐2(𝜀𝑤𝜀𝑓)

2𝑐2 + 𝑐1(𝜀𝑤𝜀𝑓)
2𝑐2 . (10) 

 

Observe the similarity between the measured and computed transversal 

deformations in Figs. 4, 5 and 6. 

 

A realistic model should contain a contribution from shear. At this stage of model 

development we neglect that contribution since the shear stiffness of technical 

textiles is about two order smaller respect to the normal stiffness in one of the 

orthogonal directions (Day 1986). Based on our experience, just about 1-2% of 

the initial slope of the normal strain can be used as a good approximation (Hegyi 

2006). This observation significantly simplifies the experimental work, too.  

 

Our assumption about the magnitudes of shear has another consequence: we take 

a nearly diagonal deformation gradient F associated with the measurements. The 

Biot strain in this special can be approximated as EBiot≈U-I=F-I, where U is the 

unitary matrix from the polar decomposition of F and I is the unit matrix in R2. It 

is worthy to note, that with this simplification the strain energy associated with the 

stresses in Eqs. (8) and (9) fulfill material objectivity. 

3. Experimental  

3.1. Experimental arrangements 

To get proper parameters for the new constitutive law three experiment series 

were carried out: 5 pcs. uniaxial tensile tests both in the warp and the weft 

directions and 5 pcs. biaxial tests. To record data, a Messphysik ME-46 full image 

video-extensometer were used in all cases. The measured area was a 30×30 mm 

square in the middle of the specimen. The longitudinal and the transversal 

elongations were measured in all cases. The material of all the specimen was 

woven glass fiber with PTFE coating: Verseidag Duraskin B 18089 (Fig. 7.). The 

average thickness was 0.67 mm with a negligible variance, the surface density 

was 1150 g/mm2. 

 

For the uniaxial test strip specimens were used: their width was 50 mm, the grip 

distance was 200 mm. Displacement test were carried out with tensile test 

machine Zwick Z020, the speed of elongation was 0.50 mm/s in all tests. The tests 

terminated after the failure (break) of the specimen and 40% of the ultimate load 

was used for parameter identification. 

 

For the biaxial tests a special equipment was used with fixed ratio of the force in 

the two directions. It is a kind of pulley system developed by the authors (Bakonyi 
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et al. 2015, Hegyi 2016). The testing configuration can be seen in Fig. 8. An X 

shape specimen is folded through a pulley system: two “legs” are going up and 

two going down to the grips of a standard unidirectional tension testing machine. 

This system is not a universal tool to measure any ratios of forces in the two 

direction, however it is a simple extension of the uniaxial tensile procedure. The 

pulleys' position determines a flat area for the proper measurement. The width of 

the “legs” are 100 mm, the radius at the intersections are 25 mm. Displacement 

test were carried out, the speed was 0.80 mm/s in all tests. 

 

 

Figure 7. Microscopic photo of the section, the cut is parallel to the weft direction. 

 

 

Figure 8. The bidirectional testing equipment. 

 

The engineering stress in the optically measured area can be calculated as an 

average in case of the unidirectional test: the measured force of the testing 

machine is divided by the width of the specimen. To approximate the stress for 

the bidirectional tests a FEM analysis was needed. Unit stress were applied at the 

end of the “legs” of the virtual specimen. The stress level varies between 68.2-

68.8% of the unit at the edge of the measuring area (Fig. 9), so it is almost 
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constant. Although it was a linear FEM analysis, we can expect almost the same 

distribution for the real specimen. From the measured force stress can be 

calculated to the “legs” of the specimen and the 68.5% of this stress were taken 

into account the measured area. 

 

 

Figure 9. FEM analysis to approximate the stress level in the measured area. 

3.2. Parameter identification 

As it is general in the literature, the material parameters of the model might be 

approximated by a least square minimization from the measured data: 

 

Ω = ∑ [(𝑠𝑤,𝑖 − 𝜎𝑤(𝜀𝑤,𝑖, 𝜀𝑤,𝑖))
2

+ (𝑠𝑓,𝑖 − 𝜎𝑓(𝜀𝑤,𝑖, 𝜀𝑤,𝑖))
2

]𝑛
𝑖=1 ⇒ 𝑚𝑖𝑛 (11) 

 

where n is the number of available measurements and sw,i and sf,i denote the 

measured stresses in the warp and weft directions, respectively. The objective 

function Ω is the linear combination of the squared errors in the two directions. A 

serious shortcoming of such an approach is that due to the presence of the 

exponentials in the model (and the numerous material parameters) the objective 

function is far from being convex, it possesses many local minima. Even a slight 

change of the initial guess of the parameters can result in a significant shift in the 

parameter space. This is a widely known problem of regression models with 

exponentials (Golub and Pereyra 2003). 

 

To obtain a reliable method, observe, that the following rearrangement of Eqs. (8) 

and (9) makes the third, interaction term vanish: 

 

𝑆 ≔ 𝜎𝑤𝜀𝑤 − 𝜎𝑓𝜀𝑓 = 𝑎1𝜀𝑤
2(1 − 𝑒−𝑎3𝜀𝑤

2
) + 𝑎2𝜀𝑤

2(𝑒−𝑎4𝜀𝑤
2
) − 

𝑏1𝜀𝑓
2 (1 − 𝑒−𝑏3𝜀𝑓

2

) + 𝑏2𝜀𝑓
2 (𝑒−𝑏4𝜀𝑓

2

) (12) 

 

Nevertheless, a counterpart of S, namely 𝑇 ≔ 𝑠𝑤𝑒𝑤 − 𝑠𝑓𝑒𝑓 can be computed from 

the measured stress (sw and sf) and strain data. To find the minimal deviation 

between S and T we use a MATLAB implementation of the variable projection 

method (O'Leary and Rust 2013). It determines all the linear and nonlinear 

parameters of the exponentials (i.e. a1-a4 and b1-b4) in our model. The range of 

plausible parameter values are summarized in Table 1. In numerical simulations, 
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we found, that this approach is much more robust for our data sets than a direct 

application of the least-square method in Eq. (11). 

 

Table 1. Range of plausible parameter values of the model 

 min max 

linear parameters: a1, a2, b1, b2 0 20 

nonlinear parameters: a3, a4, b3, b4 0 5 

interaction parameter: c1 -5 5 

interaction parameter: c2 0 1 

 

Having optimal values for the parameters of the exponentials we finally determine 

the parameters c1 and c2in the interaction term. Here least-squares is a perfect 

choice: we substitute the already computed values of a1-a4 and b1-b4 into our 

model and apply Eq. (11) to obtain optimal values for c1 and c2. 

 

Note, that we expect positive reals for all parameters and in advance we expect 

c2<1 to match our observations about the transversal behavior (Fig. 4 and 5). Our 

scheme produces parameters in accordance with these expectations. 

 

The best-fit parameters for the material in our experiments are: a1=7.11, a2=6.97, 

a3=0.831, a4=1.94, b1=1.51, b2=3.07, b3=0.268, b4=0.727, c1=0.537, c2=0.335. It 

is worthy to note that the applied methodology is fairly robust: parameter fit just 

for the uniaxial or solely for the biaxial data result in close parameter values to the 

ones presented above. The results of the parameter fit are represented in Figs. 10, 

11, 12 and 13. Figs. 10 and 11 represent the stress by the function of both strain 

and the measured data are from uniaxial and biaxial tests. Figs. 12 and 13 

represent the stress in the warp or the weft direction by the function of the warp or 

the weft strain respectively, uniaxial measures are on these plots. 

 

 

Figure 10. The general result of the parameter identification for the weft direction. 
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Figure 11. The general result of the parameter identification for the warp direction. 

 

 

Figure 12. The uniaxial result of the parameter identification for the warp direction. 

 

Figure 13. The uniaxial result of the parameter identification for the weft direction. 

 

5. Discussion and verification 

To obtain the actual normal stresses from the bidirectional strains Eqs. (8) and (9) 

are applied. In practical numerical analysis of a structure the constitutive law is 
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represented via the stiffness or the flexural matrices. A nonlinear constitutive law 

requires a nonlinear structural analysis. There are different strategies for nonlinear 

structures, for membrane structures the Total Lagrange Method (TLM) or the 

Updated Lagrange Method (ULM) can be regarded as typical. 

 

In the case of TLM the deformation is calculated between the un-deformed, stress 

free state and the actual state. The secant of the stress-strain curve can be used: 

 

𝐷 =

[
 
 
 
𝜎𝑤

𝜀𝑤

𝜎𝑓

𝜀𝑤
0

𝜎𝑓

𝜀𝑤

𝜎𝑓

𝜀𝑓
0

0 0 𝐺]
 
 
 
> 0. (13) 

 

In the case of ULM the tangential stiffness matrix can be used: 

 

𝐷 =

[
 
 
 
 
𝜕𝜎𝑤

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑤
0

𝜕𝜎𝑓

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑓
0

0 0 𝐺]
 
 
 
 

> 0. (14) 

 

According to chapter 2.2 G=(a1+b1)/(2×100)=(7.11+1,51)/(2×100)=0,043 

N/mm2is used for further analysis. 

 

Another important criteria for a stable constitutive material law to have a positive 

definite stiffness matrix: 

 

|𝐷| = |

𝐷𝑤𝑤 𝐷𝑤𝑓 0

𝐷𝑤𝑓 𝐷𝑓𝑓 0

0 0 𝐺

| = ||

𝜕𝜎𝑤

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑤
0

𝜕𝜎𝑓

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑓
0

0 0 𝐺

|| > 0, (15) 

 

where D is the stiffness matrix of the material, Dww, Dff, Dwf and G are the 

members of the stiffness matrix for normal stress, transversal effect and shear, 

respectively. G is a positive, so for positive definiteness it is enough to prove: 

 

𝐷′ =
𝜕𝜎𝑤

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑓
− (

𝜕𝜎𝑓

𝜕𝜀𝑤
)
2

> 0. (16) 

 

With the identified parameters the D’ function can be drawn as a two-variable 

function of the strains (Fig.14). The surface is above 0 for reasonable strains (the 

stress is represented in percent, and normally the strain is under 4-5% even in the 

ultimate load level). At larger strains and in moderate negative strain D’ is 

negative. Fig. 15 shows the border of the positive region, the zone containing the 

origin is positive. To have a stable numerical analysis the determinant should be 

controlled, but there is no problem in reasonable strain levels. 
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Figure 14. The surface of the D’ function according to the strains. 

 

 

Figure 15. Theintersection of the surface of the D’ function with the 0 plan. 

 

Fig. 15 shows, we are close to the border of the positive definite regime along the 

negative side of the axes, and over 5% of biaxial elongation. In classical Finite 

Element Method it can yield to instability, due to the requirement of the inverse of 

the stiffness. In any case for moderate strain the new constitutive model is stable. 

For extremely large strains the Dynamic Relaxation Method provides a proper 

strategy (Hegyi 2005, 2006). It does not use the inverse of the stiffness so positive 

definiteness is not an issue. 

 

Both the power function methods (for instance the spline method) and the 

exponential functions we use have disadvantages at large strain. The benefit of the 

exponential approach introduced in this paper is the solid convergence to a slope 

instead of the hectic behavior of the power functions in extrapolation. In further 

work the model can be extended by a phenomenological damage model to explain 

the significant difference between the first loading and the cyclic behavior. 

6. Conclusion 

A new, elastic constitutive law for predicting service stresses of engineering 

textiles is introduced accompanied with a data acquiring strategy from uniaxial 
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and biaxial tension tests. The constitutive law accounts for both the nonlinear 

behavior of the yarns and the geometric nonlinearity of the fabric. Exponential 

functions are used to avoid the divergence of the numerical scheme in the 

nonlinear structural analysis. The new constitutive law fulfills all the requirements 

for a real material: existence of a strain energy function, positive definiteness at 

reasonable strain levels. 
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