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Notation 
 
Abbreviations  
CV – Coefficient of Variation 
DMR – Duplex Memory Reliability (function, tensor, matrix, …) 
FBC – Fiber Bundle Cells 
FEM – Finite Element Method 
GMS – Global Memory Stiffness 
PDF – Probability Distribution Function 
RF – Reliability Function  
SD – Standard deviation 
WF – Window Function  
 
General signs and notations 
a, A – cursive lowercase or uppercase letters symbolize real parameters, variables, or functions a – upright lowercase underlined letters symbolize vectors 
A, A – upright bold and regular uppercase letters symbolize tensor and matrix, respectively 
B – general index for normal compressive (-B=C) or tensile (B=T) or shear (B=S) breaking strain 𝔻(X) – Standard Deviation of the stochastic variable X 𝔼(X) – Expected value of the stochastic variable X ℙ(A) – Probability of event A 
PX(u)= ℙ(X<u) – Probability Distribution Function (PDF) of the stochastic variable X Y෩, 𝑌෨– over-tilde~ designates the stochastic process character of matrix (Y) or composite function (𝑌) 
containing empirical duplex RFs (e.g. rCT(u) or 𝑟஼∗் (u)) as entries or internal variables, respectively Y∗, Y෩∗  – superscript asterisk* denotes the memory property of window functions (𝜒௓௡∗ ), empirical 
(𝑟௑∗(u)) and expected reliability functions (𝑅௑∗ (u)), or stochastic vector or matrix (e.g.  𝜎෥ ∗, C෨ ∗, R෩∗). The 
expectation of the latter expressions has the memory property as well, therefore it is indicated by 
the asterisk only (e.g. 𝜎∗, C∗,  R∗). 
 – at the end of a proof, it indicates completion (Q.e.d.)  
 
Variables and parameters 
f, fS – normal and shear engineering stress, respectively f ଴, f ଵ – in-plane force and moment vectors, respectively 
g(u), gS(w) – tensile and shear force–strain characteristic curves of the intact fibers, respectively 
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h – thickness of the laminate 
rX(u), rY(w) – empirical RF of the fiber bundle related to X{C,T } and Y{-S,S}, respectively 
rCT(u), r-S,S(w) – empirical duplex RFs of the fiber bundle, respectively 
u, w – normal and shear strain load of the E-bundle, respectively 
um(t), wm(t) – minimum of the normal and shear strain load in the time interval [0,t], respectively 
uM(t), wM(t) – Maximum of the normal and shear strain load in the time interval [0,t], respectively 
A, A0 – cross-sectional area of the loaded and unloaded fibers, respectively A, B, W – general stiffness minor matrices of the laminate C – stiffness tensor  C = [cij] – compacted matrix of the stiffness tensor C (constant elements) C෨ ∗= CR෩∗, C*=CR* – empirical and expected memory stiffness matrix  D – strain tensor for the lamina D = [ij] – compacted matrix of the strain tensor D and the normal (i=j) or shear (ij) strain elements 
En and E – tensile elastic modulus of the nth fiber and its expectation 
Fn(u), FSn(w) – tensile and shear force arising in the nth fiber 
F(u), FS(w) – tensile and shear force arising in the fiber bundle 
Gn and G – shear elastic modulus of the nth fiber and its expectation 
L, L0 – length of the loaded and unloaded fiber bundle, respectively 
M – number of mechanical measurements or observations 
N – number of fibers in the E-bundles 
RX(u), RY(w) – expected RF of the fiber bundle related to X{C,T } and Y{-S,S}, respectively 
RCT(u), R-S,S(w) – expected duplex RFs of the fiber bundle, respectively 𝑹෩*, R* – empirical and expected DMR tensors, respectively R෩* = [𝑟௜௝∗ ], R* = [𝑅௜௝∗ ] – compacted matrix of the empirical and expected DMR tensors  
S0 – shear surface area of the fibers S – stress tensor for the lamina S = [ij] – matrix of the stress tensor S and the normal (i=j) or shear (ij) stress elements U = [uij] – strain load matrix and its elements related to the (ij)th fiber bundle (u=uii; w=uij, ij) 
 – shear strain 
 – normal strain 
--Bn, Bn – normal (-B=C, B=T) and shear (B=S) breaking strain of the nth fiber, respectively 
 = [i] – strain vector  
CT(u), -S,S(w) – mean normal and shear modulus functions of the fiber bundle, respectively 𝜅௫଴, 𝜅௫଴, 𝜅௫௬଴  – out-of-plane deflection and torsion deformations 
ij – Poisson’s coefficient of the fibers 
 – normal stress 
 = [i] – stress vector 
 – shear stress 𝜒௓௡, 𝜒௓௡∗  – WF and MWF of the nth fiber related to strain load Z{C, T,-S, S}, respectively 𝜒ି஻,஻௡, 𝜒ି஻,஻௡∗  – duplex WF and MWF of the nth fiber related to –B, B{CT; -S, S}, respectively 
(u) – contraction function for the fibers 
 

Abstract 
Based on the fiber bundle cells (FBC) theory, we introduced the so-called memory reliability functions 
to take into account the different changing strain loads including both the monotone, the pulsating 
and the alternating modes. We proved that the duplex compressive–tensile memory reliability 
function is the product of the compressive and the tensile memory reliability functions. Utilizing the 
generalized Hooke’s law and the memory reliability functions, we developed a stochastic linear elastic 
material law that also represents the damage and failure processes with normal and shear strain loads. 
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This made it possible to calculate the expected value as the variance of the stress response process 
and determine its confidence interval at any strain load.  
Keywords: material law, composites, fiber bundle, memory reliability function, stochastic modeling 

1 INTRODUCTION 
 
In the last few decades, fiber-reinforced composites have become very important structural materials 
and they have been widely used in both engineering constructions and everyday life. All that is 
especially true for composites with a polymer matrix because of their advantages, such as low weight, 
high stiffness and strength, easy production even in large sizes, and relatively low cost. Designing for 
engineering or construction, including machine parts made from high-performance composite 
materials needs suitable and accurate mathematical models and calculation methods for parts with 
optimized geometry, mass, strength properties, energy consumption, and reliability-based life 
expectancy.1 
In general, the material models used for designing parts assume a linear elastic mechanical behavior 
based on Hooke’s Law1-5. 
With Finite Element Method (FEM)–based simulation models, complex engineering constructions can 
be designed, where, in general, the load is assumed to be below the load causing failure. Correct design 
should be based on elasticity and strength data obtained from mechanical tests of different types and 
some of the failure criteria1-3, 6-8. According to a NASA report in 20017, in practice and in general, 
researchers or engineers apply a set of simple criteria related to the damage or failure types rather 
than the usual failure criteria of global and average view when they design constructions of high 
standard.  
Damage makes the stress–strain relationships non-linear and stochastic. To take into account the non-
linearity effect, for example, the so-called Cohesive Zone Method (CZM) has been developed in 
fracture mechanics for modeling crack propagation and the delamination process in solids8, 9. Its 
simplified form called the bi-linear CZM model, where the traction-separating law has a triangle shape, 
has often been applied to describe failure phenomena in finite element (FEM) simulations8-12. 
However, considering the stochastic nature of the damage and failure processes in structural 
mechanics13 would require a probabilistic material law and determining the confidence interval or 
range at a given probability level. One of the most effective methods to take into account stochastic 
effects of several types of damage is the fiber bundle model14-22, which has widely been used for 
describing failure processes of various kinds occurring in different materials23-28. The theory and some 
methods of using the classical fiber bundle were developed essentially in the period between 1920 and 
199014-20 by Peirce14, Daniels15, Phoenix16-18, and Harlow17, 19, among others. The classical fiber bundle19 
consists of elastic and straight (polymer) fibers with the same tensile modulus. The fibers have the 
same linear density and are parallel to the uniaxial tensile load, and their breaking strain is a stochastic 
variable of the same probability distribution. In this period, the classical fiber bundle–based method 
was applied to predicting the expectation and/or the distributions of the strength of fibrous 
structures19 and the so-called size effects in strength20, and to modeling how stress concentration 
develops under different conditions20-22. Moreover, Curiskis and Carnaby23 proposed a method to treat 
3D fiber bundles with continuum mechanics. Some recent applications used the fiber bundle model in 
FEM simulations24-28. Moreover, the fiber bundle model gained remarkable importance in modeling 
the mechanical behavior of metals27.  
To describe the total deformation and damage process up to ultimate failure and take into 
consideration statistical defects in other mechanical, structural, and geometrical properties, we have 
developed the so-called Fiber Bundle Cells (FBC) modeling method, which defines several fiber bundles 
of different properties, where the fibers are linear or nonlinear elastic (E – elastic)29, 30. The simple E-
bundle is similar to the classical one, when the fibers are linear elastic, but their tensile stiffness may 
be stochastically variable. Spoiling the ideal properties of the E-bundle provides other fiber bundles 
representing further statistical defects such as crimped (EH-bundle) or oblique (ET-bundle) fibers or 
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the slippage of fibers out of their gripping realized by their vicinity (ES-bundle)29, 30. They are called 
fiber bundle cells (FBCs). In general, the FBC model is a network of fiber bundle cells weighted by their 
fiber number fractions. The FBC modeling method can be used in two different ways29-40. 
One of them is the structural–mechanical modeling of mechanical behavior at fiber/matrix level during 
different mechanical tests where the FBC model plays the role of the material law29. Such are for 
example, the tensile testing of a twisted filament fiber bundle31 or a unidirectional short fiber-
reinforced composite32, 33, or the 3-point bending of a unidirectional carbon/epoxy composite beam34, 

35.  
The other is the phenomenological modeling of measured stress–strain relationships by connecting 
weighted FBCs in parallel. In this case, the FBC model is fitted to the test and provides a decomposition 
of the measured stress–strain curve, which supplements the usual test results with important 
additional information29, 30. For instance, the fitted linear FBC model of an electrospun nanofibrous 
web made it possible to assess the strength of the single nanofibers indirectly, without any 
measurements on single nanofibers36. Since the weighted parallel connection of nonlinear E-bundles 
can approximate any FBC, it can be used for any other fiber bundle cell, that is, any FBC model as well37-

40. This fact is utilized when acoustic emission and stress–strain behavior are modeled simultaneously 
during the tensile testing of short glass fiber–reinforced PP composite plates. This way, the nonlinear 
E-bundles represent different failure modes, such as micro-cracking, fiber/matrix debonding, or the 
slippage or breakage of fibers37. Other applications were modeling the tensile stress–strain 
relationships of woven fabrics and their composites38 or describing the rugged tensile stress–strain 
curve of single tests performed on human tissue specimens39. It could also be applied to modeling the 
mechanical behavior of the microstructural phases in nanotube- and microfiber-reinforced 
thermoplastic matrix composites40. 
Based on the results and experiences we have gained by FBC modeling the damage and failure 
processes in different types of fibrous structures and materials, we aimed to develop a 3D fiber 
bundle–based material law. Hence, in this paper, we propose an FBC-based material model that is 
linear elastic below destructive load level and can describe the nonlinear damage and failure processes 
of different types occurring at destructive load levels.  

2 LINEAR E-BUNDLES 
 
In this paper, we created a statistical material model for linear elastic materials, which also describes 
the damage and failure processes besides deformation behavior. It is based on special E-bundles in 
which the idealized model fibers are unidirectional and have finite tensile, compressive, and shear 
moduli, which may be stochastic parameters. Hence, as a sort of generalization, these E-bundle model-
fibers can be stretched, compressed and sheared, and the related stress–strain relationships are linear 
elastic. Otherwise, these model fibers fail (break, fracture, or rupture) when their normal (tensile or 
compressive) or shear strain reaches a random value called breaking strain, which has a known 
distribution function. In the case of the originally introduced linear E-bundle [29, 30], the strain load 
as stimulus was described with a monotone increasing tensile load–time function which usually is not 
true in practice. Therefore, subsequently, we try to extend the usability of linear E-bundles for 
alternating tensile and compressive, and shearing load. 
 
2.1 Basic properties of the FBC material model 
 
Consider a small cubic part of a continuum material exhibiting linear elastic behavior given by Hooke’s 
law. With a small load, the mechanical behavior of this cube is the same as that of the original material. 
To model its behavior in the region of the damage and failure, the small cubic-shaped material volume 
is considered fiberized into virtual sticklike fibers. They become independent discrete elements and 
create an E-bundle. The abstract form of the E-bundle consists of virtual fibers—straight lines of 
volume-less mass points. In every main direction, different E-bundles characterize the mechanical 
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properties of the material (Figures 1.e and 1.f). Accordingly, the sticklike fibers are built up of 
elementary cubic parts with the same general elastic behavior as the material in their vicinity (Figure 
1). 

 
Figure 1 Virtual partitioning of a small 2D square volume (a) in two directions into 5 parallel sticks (b, 

c) then 5 model fibers (e, f) and their union (d; g)  
 
Thus, the fibers are discrete sticklike continuum objects (Figure 1) having the same unloaded cross 
section (A0) and creating a linear E-bundle. This means that they are: 
linear elastic, that is, their stress–strain relationships are homogeneous linear functions for any load 

mode (compression, tensioning/stretching, shearing), 
straight and parallel to each other, 
not pre-strained or loose, 
ideally gripped, that is, they do not fail in the grips and are not pulled out of the grips, 
independent of each other, that is, there is no mechanical contact or interaction between them. 

The number of fibers in a unidirectional E-bundle is finite and denoted by N, hence the cross-sectional 
area of the bundle is NA0. In every case, the fiber bundle is subjected to controlled time-dependent (t) 
strain deformation as stimulus, which is denoted by u(t) or w(t) when normal or shear strain is used, 
respectively. 
The normal bundle strain, u, is parallel to the fibers while the shear bundle strain, w, is perpendicular 
to them: 𝑢 = ∆௅௅బ = ௅ି௅బ௅బ         (1) 𝑤 = ∆ு௅బ = tan (𝛾) ≈ 𝛾      (2) 
 
where L0 and L are the lengths of the unloaded and loaded fiber bundle, respectively, while L and H 
are the normal and shear displacements of the loaded bundle, respectively. The normal () and shear 
() strains of each fiber are assumed identical with those of the fiber bundle 
 𝜀(𝑢) = 𝑢        (3) 𝛾(𝑤) = arctan (𝑤) ≈ 𝑤      (4) 
 
Considering a Cartesian coordinate system with axes x1, x2 and x3, and deformation matrices U=[uij]=[ij]=D, where u{u11, u22, u33} and {11, 22, 33} denote some of the normal bundle and fiber 
strains while w{uij: ij} and {ij: ij} denote some of the shear bundle and fiber strains. For example, 
in a plane, u=u11 is parallel to the coordinate axis x1, consequently w is parallel to axis x2 or x3.  
 
2.2 Mechanical properties of single model fibers 
 

x1
x2 a) b) e)

c) d)

f) g)
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Let us suppose that the normal bundle strain, u (or u1=u11) is parallel to the axis x (or x1) and so are the 
fibers considered. 
 
2.2.1 Nondestructive monotonic load – Deterministic mechanical behavior 
 
Stress–strain relationships 
The compressive (u0) and tensile (0u) stress–strain relationships of the nth fiber (n=1,…,N) are the 
same, and the compressive and tensile moduli are equal and denoted by En. For the nth fiber, the next 
characteristic function, gn(u), describes the real normal stress response of the fibers when no damage 
or failure occurs during loading: 𝜎(𝑢) = 𝑔௡(𝑢) = 𝐸௡𝜀(𝑢) = 𝐸௡𝑢      (5) 
 
The negative (w0) and positive (0w) shear stress–strain relationships of the nth fiber are the same, 
that is, the negative and positive shear moduli are equal (denoted by Gn). For the nth fiber, the 
characteristic function, gSn(w), describes the shear stress response () of the fibers when no damage 
or failure occurs during loading: 𝜏(𝑤) = 𝑔ௌ௡(𝑤) = 𝐺௡𝛾(𝑤) = 𝐺௡𝑤      (6) 
 
Poisson effects 
The fibers as continuum sticks exhibit the Poisson effect, that is, a contraction in the cross section, 
when they are subjected to normal strain load. On the other hand, the shear strain load of the bundle 
is assumed to result in volume-preserving shear deformation of the fibers, although without any 
Poisson’s effect (Figure 2). 

 
Figure 2 Assumed mechanical behavior of the fibers as elastic continuum sticks (the blue-filled 

rectangles represent the unloaded fibers) when subjected to compressive (a), tensile (b), and shear 
(c) strain loads  

 
For example, when tensile strain load is acting in direction x1, u=u1, the crosswise contraction of the 
nth fiber, as the Poisson effect, can be described with an area contraction function, (u):=1(u), which 
is the ratio of the loaded, A:=A1, and the initial, A0:=A10, cross section areas of the fiber (0u) (Figure 
1): Ψ(𝑢) = ଵଵା௨ ≤ 𝜓(𝑢) = ஺(௨)஺బ = ஺భ(௨)஺భబ = 𝜓ଵ(𝑢) ≤ 1    (7) 
 
where (u)=(u) is valid for volume constancy, while (u)=1(u)1 is true for cross section constancy. 
When the strain load in direction x1 is small, the linear contraction functions, 12(u) and 13(u) related 
to the two crosswise directions (2 and 3) and given by the Poisson’s coefficients, 12 and 13 [1-3] are 
used for linear elastic materials: 
 𝜓ଵ(𝑢) = 𝜓ଵଶ(𝑢)𝜓ଵଷ(𝑢) = (1 − 𝜈ଵଶ𝑢)(1 − 𝜈ଵଷ𝑢) ≈ 1 − (𝜈ଵଶ + 𝜈ଵଷ)𝑢,       0 ≤ 𝑢 ≤ 𝑢௏      (8) 
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For example, the upper limit, uV, can be defined by solving the following equation: 
 𝑢௏ :  ଵଵା௨ = 1 − (𝜈ଵଶ + 𝜈ଵଷ)𝑢   ⇒    𝑢௏ = ଵି(ఔభమାఔభయ)ఔభమାఔభయ    (9) 
 
At the value uV, linear contraction is positive and reaches the value given by volume constancy 
(0<1(uV)=(uV)). The contraction function given by Eq. (7) can be applied to a compressive load (u0), 
in the strain load range as well (-1, 0]: 
 Ψ(𝑢) = ଵଵା௨ ≥ 𝜓(𝑢) = ஺(௨)஺బ ≥ 1     (10) 

Fiber forces 
The compressive (u0) or tensile (0u) force arising in the nth fiber can be calculated with Eqs. (5) and 
(7) when no damage or failure occurs during loading: 
 𝐹௡(𝑢) = 𝐴(𝑢)𝜎௡(𝑢) = 𝐴଴𝜓(𝑢)𝜎௡(𝑢) = 𝐸௡𝐴଴𝜓(𝑢)𝜀(𝑢) = 𝐸௡𝐴଴𝜓(𝑢)𝑢        (11) 
 
Correspondingly, engineering stress, fn, can be defined as a specific force that is larger or smaller than 
the real compressive or tensile stress, n, respectively: 
 𝑓௡(𝑢) = ி೙(௨)஺బ = 𝜓(𝑢)𝜎௡(𝑢) = 𝐸௡𝜓(𝑢)𝜀(𝑢) = 𝐸௡𝜓(𝑢)𝑢 = ൜ ≥ 𝜎௡(𝑢),   𝑢 ≤ 0≤ 𝜎௡(𝑢),   0 ≤  𝑢   (12) 

 
The negative (w0) and positive (0w) shear force arising in the nth fiber can be calculated with Eq. (6) 
and the constant shear surface S0 when no damage or failure occurs during loading: 
 𝐹ௌ௡(𝑤) = 𝑆଴𝜏௡(𝑤) = 𝐺௡𝑆଴𝛾(𝑤) = 𝐺௡𝑆଴𝑤      (13) 
 
Consequently, engineering shear stress equals real stress: 
 𝑓ௌ௡(𝑤) = ிೄ೙(௪)ௌబ = 𝜏௡(𝑤) = 𝐺௡𝑤      (14) 
 
2.2.2 Destructive monotonic load – Stochastic mechanical behavior 
 
Breaking strains and the window functions 
When the compressive or tensile strain load is increased, u, the nth fiber (n=1, 2,…, N) fractures at a 
random compressive breaking strain, -Cn, (u0) without any elastic buckling or breaks at a random 
tensile strain, Tn, (0u). Hence, as far as the fiber is intact, normal strain remains between these limits: 
 −𝜀஼௡ ≤ 𝜀(𝑢) = 𝑢 ≤ 𝜀்௡       (15) 
 
En, Cn, and Tn are independent stochastic variables with probability distribution functions PE(x) (0x), 
PC(u) and PT(u) (-<u<), respectively, which are the same for every fiber and have finite expected 
values and variances. 
The nth fiber (n=1, 2,…, N) fractures at a random negative shear breaking strain, --Sn, (w0) or breaks 
at a random positive shear strain, Sn, (0w). Hence, as far as the fiber is intact, shear strain remains 
between these limits: −𝜀ିௌ௡ ≤ 𝛾(𝑤) = 𝑤 ≤ 𝜀ௌ௡       (16) 
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Gn, 𝜀-Sn, and 𝜀Sn are independent stochastic variables with probability distribution functions PG(x) (0x), 
P-S(w) and PS(w) (-<w<), respectively, which are the same for every fiber and have finite expected 
values and variances.  
In addition, all the above-mentioned stochastic parameters, such as the compressive, tensile, and 
shear parameters are independent of each other as well. 
Definition 
For compressive and tensile monotonic strain loads, the following so-called window functions (WF), 
Cn and Tn are defined for the nth fiber, whose value is 1 while there is no failure and 0 at or after 
failure: 𝜒஼௡(𝑢) = 𝜒஼(𝑢, −𝜀஼௡) = ൜ 1, −𝜀஼௡ < 𝑢 < ∞0, ∞ <  𝑢 ≤ −𝜀஼௡     (17) 𝜒்௡(𝑢) = 𝜒்(𝑢, 𝜀்௡) = ൜1, −∞ < 𝑢 < 𝜀்௡0,   𝜀்௡ ≤ 𝑢 < ∞      (18) 

 
Similarly, for negative and positive monotonic shear strain loads, the following so-called shear 
window functions (shear WF), - Sn and Sn are defined for the nth fiber: 
 𝜒ିௌ௡(𝑤) = 𝜒ିௌ(𝑤, −𝜀ିௌ௡) = ൜ 1, −𝜀ିௌ௡ < 𝑤 < ∞0, −∞ < 𝑤 ≤ −𝜀ିௌ௡    (19) 𝜒ௌ௡(𝑤) = 𝜒ௌ(𝑤, 𝜀ௌ௡) = ൜1, −∞ < 𝑤 < 𝜀ௌ௡0,   𝜀ௌ௡ ≤ 𝑤 < ∞      (20) 

 
It is assumed that the fracture or breakage is complete and ultimate, so the fractured or broken fiber 
will not transmit any stress or force. 
Figure 3.a shows an example of the compressive and tensile window functions of a single fiber, which 
can be regarded as a one-fiber bundle. 
 

   
(a)                                                                 (b) 

Figure 3 Example of the compressive and tensile window functions of a single fiber (a) and the 
normal duplex window function (b) 

 
Definition 
For both compressive and tensile monotonic strain loads, the normal duplex window function (n. 
duplex WF), CTn can be defined for the nth fiber. Its value is 1 while there is no failure and 0 at or after 
failure (Figure 3.b): 𝜒஼்௡(𝑢) = 𝜒஼்(𝑢, −𝜀஼௡ , 𝜀்௡) = ൜ 1, −𝜀஼௡ < 𝑢 < 𝜀்௡0,   𝑢 ≤ −𝜀஼௡  𝑜𝑟  𝜀்௡ ≤ 𝑢    (21) 

 
Similarly, for both negative and positive monotonic shear strain loads, the negative–positive shear 
duplex window function (s. duplex WF), -S,Sn, is defined for the nth fiber as the following: 
 𝜒ିௌ,ௌ௡(𝑤) = 𝜒ିௌ,ௌ(𝑤, −𝜀ିௌ௡, 𝜀ௌ௡) = ൜ 1, −𝜀ିௌ < 𝑤 < 𝜀ௌ௡0,   𝑤 ≤ −𝜀ିௌ௡  𝑜𝑟  𝜀ௌ௡ ≤ 𝑤   (22) 
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Statement:  
For compressive and tensile monotonic normal strain loads, the normal duplex WF, CTn, can be 
calculated as the product of Cn and Tn : 
 𝜒஼்௡(𝑢) = 𝜒஼்(𝑢, −𝜀஼௡ , 𝜀்௡) = 𝜒஼(𝑢, −𝜀஼௡)𝜒்(𝑢, 𝜀்௡) = 𝜒஼௡(𝑢)𝜒்௡(𝑢)  (23) 
 
For negative and positive monotonic shear strain loads the shear duplex WF, -S,Sn, can be calculated 
as the product of -Sn and Sn : 
 𝜒ିௌ,ௌ௡(𝑤) = 𝜒ିௌ,ௌ(𝑢, −𝜀ିௌ௡, 𝜀ௌ௡) = 𝜒ିௌ(𝑢, −𝜀ିௌ௡)𝜒ௌ(𝑢, 𝜀ௌ௡) = 𝜒ିௌ௡(𝑤)𝜒ௌ௡(𝑤)  (24) 
 
Proof: Considering the definitions given by Equations (21) and (22), the statements are trivial. For 
example, the expressions in Equations (21) and (23) are equal for every value of u, that is, according to 
the definitions given by Equations (17) and (18), the product equals 1 if and only if both factors are 1 
and is 0, otherwise: 
 𝜒஼௡(𝑢)𝜒்௡(𝑢) = 𝜒஼(𝑢, −𝜀஼௡)𝜒்(𝑢, 𝜀்௡) = ൜1, −𝜀஼௡ < 𝑢  𝑎𝑛𝑑  𝑢 < 𝜀்௡0,   𝑢 ≤ −𝜀஼௡  𝑜𝑟  𝜀்௡ ≤ 𝑢 = 𝜒஼்௡(𝑢) 

 
Eq. (24) can be seen similarly as that above.   
Figure 3.b demonstrates that the normal duplex WF of a single fiber can be regarded as the product of 
the compressive and tensile window functions (Figure 3.a). 
 
Stress–strain and force–strain relationships including failures 
When damage or failure may occur during monotonic normal strain loading, the stress arising in the 
nth fiber can be calculated for a compressive (u0) and tensile (0u) load with Eqs. (5), (21), and (23): 
 𝜎௡(𝑢) = 𝑔௡(𝑢)𝜒஼்௡(𝑢) = 𝐸௡𝑢𝜒஼்(𝑢, −𝜀஼௡, 𝜀்௡) = 𝐸௡𝑢𝜒஼௡(𝑢)𝜒்௡(𝑢)        (25) 
 
Similarly, with the use of Eqs. (6), (22), and (24), the shear stresses for monotonic negative (w0) and 
positive (0w) shear strain load are given by: 
 𝜏௡(𝑤) = 𝑔ௌ௡(𝑤)𝜒ିௌ,ௌ௡(𝑤) = 𝐺௡𝑤𝜒ିௌ,ௌ(𝑢, −𝜀ିௌ௡, 𝜀ௌ௡) = 𝐺௡𝑤𝜒ିௌ௡(𝑤)𝜒ௌ௡(𝑤)  (26) 
 
The monotonic normal (compressive (u0) or tensile (0u)) force, Fn(u), arising in the nth fiber subjected 
to monotonic normal strain load can be calculated with Eqs. (25), (11) and (12), which is proportional 
to the normal engineering stress, fn(u) (Figure 4): 
 𝐹௡(𝑢) = 𝐴ଵ(𝑢)𝜎௡(𝑢) = 𝐴଴𝜓(𝑢)𝜎௡(𝑢) = 𝐴଴𝜓(𝑢)𝐸௡𝑢𝜒஼்(𝑢, −𝜀஼௡, 𝜀்௡) = 𝐴଴𝑓௡(𝑢)     (27) 
 
Correspondingly, applying Eqs. (26), (13) and (14), the shear force, FSn(w), and the engineering shear 
stress, fSn(w), can be defined: 
 𝐹ௌ௡(𝑤) = 𝑆଴𝜏௡(𝑤) = 𝑆଴𝐺௡𝑤𝜒ିௌ,ௌ(𝑢, −𝜀ିௌ௡, 𝜀ௌ௡) = 𝑆଴𝑓ௌ௡(𝑢)      (28) 
 
where fSn(w)=n(w) for every w0. 
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(a)                                                                          (b) 

Figure 4 Example of the normal duplex WF (a) and the normalized compressive–tensile force process 
(b) of a single fiber as a response to the monotone increasing normal strain load (k(x)=x; CB=2, TB=3) 

 
2.2.3 Destructive alternating load – Stochastic mechanical behavior 
 
Previously, we used monotone strain loads. Now, let us consider a pulsating (x0) (Eq. (29) and Figure 
5.a) or alternating (-<x<) (Eq. (30) and Figure 5.b) strain load. As an example, we use simple 
sinusoidal functions of linearly increasing amplitude and mean value, which is normalized by the mean 
breaking strain of the fibers (B) (Figure 5): 
 𝑥(𝑡) = ఌ(௧)ఌಳ = ଵସ ௧் ൬𝑐଴ + 𝑐ଵ𝑐𝑜𝑠 ቀ2𝜋 ௧்ቁ൰     (29-30) 
 
where T is the period during which c0 and c1 are constant parameters. 

  
(a)                                                                                        (b) 

Figure 5 Examples of the pulsating (T=1, c0=0.78; c1=-0.6) (a) and the alternating (T=1, c0=0; c1=0.6 ) 
(b) sinusoidal function of linearly increasing amplitude and its minimum and maximum 

 
When pulsating or alternating strain load is used (Figure 5), as an effect of the extreme values, it may 
occur that after some fiber breakage, the load decreases. However, the broken fibers do not recover, 
consequently reliability remains low, due to the fiber failures. To take this into account, we need to 
create a kind of minimum-preserving reliability function. 
Definition: 
The strain loads u(t) or w(t) are called alternating if they take up both negative and positive values in 
time. Minimum (index: m) and maximum (index: M) of the alternating normal and shear strain loads, 
u(t) and w(t), in the time interval [0,t] are defined as follows (Figure 5): 
 𝑢௠(𝑡) = min଴ஸ௧ᇲஸ௧ 𝑢(𝑡ᇱ) ≤ 𝑢(𝑡) ≤ 𝑢ெ(𝑡) = max଴ஸ௧ᇲஸ௧ 𝑢(𝑡ᇱ)        (31) 𝑤௠(𝑡) = min଴ஸ௧ᇲஸ௧ 𝑤(𝑡ᇱ) ≤ 𝑤(𝑡) ≤ 𝑤ெ(𝑡) = max଴ஸ௧ᇱஸ௧ 𝑤(𝑡ᇱ)     (32) 
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The extremal functions above are monotone and for example, um(t)0 when u(t) is non-negative and 
pulsating (Figure 5.a). 
Definition 
For alternating compressive and tensile strain loads, the so-called memory window functions (MWF) 
of the nth fiber preserve their minimum values taken up in the time interval [0,t] and are defined as: 
 𝜒஼௡∗ ൫𝑢(𝑡)൯ = min଴ஸ௧ᇲஸ௧ 𝜒஼(𝑢(𝑡ᇱ), −𝜀஼௡)      (33) 𝜒்௡∗ ൫𝑢(𝑡)൯ = min଴ஸ௧ᇲஸ௧ 𝜒்(𝑢(𝑡ᇱ), 𝜀்௡)      (34) 
 
For alternating negative and positive shear strain loads, they are: 
 𝜒ିௌ௡∗ ൫𝑤(𝑡)൯ = min଴ஸ௧ᇲஸ௧ 𝜒ିௌ(𝑤(𝑡ᇱ), −𝜀ିௌ௡)     (35) 𝜒ௌ௡∗ ൫𝑤(𝑡)൯ = min଴ஸ௧ᇲஸ௧ 𝜒ௌ(𝑤(𝑡ᇱ), 𝜀ௌ௡)      (36) 
 
Statement: 
For alternating compressive and tensile strain loads, the MWFs of the nth fiber preserve their minimum 
values taken up in time interval [0,t]. It can be obtained as: 
 𝜒஼௡∗ ൫𝑢(𝑡)൯ = min଴ஸ௧ᇲஸ௧ 𝜒஼(𝑢(𝑡ᇱ), −𝜀஼௡) = 𝜒஼(𝑢௠(𝑡), −𝜀஼௡) = ൜1, −𝜀஼௡ < 𝑢௠(𝑡)0,   𝑢௠(𝑡) ≤ −𝜀஼௡   (37) 𝜒்௡∗ ൫𝑢(𝑡)൯ = min଴ஸ௧ᇲஸ௧ 𝜒்(𝑢(𝑡ᇱ), 𝜀்௡) = 𝜒்(𝑢ெ(𝑡), 𝜀்௡) = ൜1,   𝑢ெ(𝑡) < 𝜀்௡0, 𝜀்௡ ≤ 𝑢ெ(𝑡)     (38) 

 
For alternating negative and positive shear strain loads, they are: 
 𝜒ିௌ௡∗ ൫𝑤(𝑡)൯ = min଴ஸ௧ᇲஸ௧ 𝜒ିௌ(𝑤(𝑡ᇱ), −𝜀ିௌ௡) = 𝜒ିௌ(𝑤௠(𝑡), −𝜀ିௌ௡) = ൜1, −𝜀ିௌ௡ < 𝑤௠(𝑡)0,   𝑤௠(𝑡) ≤ −𝜀ିௌ௡         (39) 𝜒ௌ௡∗ ൫𝑤(𝑡)൯ = min଴ஸ௧ᇲஸ௧ 𝜒ௌ(𝑤(𝑡ᇱ), 𝜀ௌ௡) = 𝜒ௌ(𝑤ெ(𝑡), 𝜀ௌ௡) = ൜ 1, 𝑤ெ(𝑡) < 𝜀ௌ௡0,   𝜀ௌ௡ ≤ 𝑤ெ(𝑡)     (40) 

 
Proof: It is enough to see, for example Eq. (38) (or (37)). The first expression of 𝜒்௡∗ ൫𝑢(𝑡)൯ is given by 
Eq. (34) (or (33)). Eq. (A2) (or (A4)) in Appendix A1 provides the second expression of Eq. (38) (or (37)) 
while the definition of T given by Eq. (18) (or (17)) gives the third one: 
 min଴ஸ௧ᇲஸ௧ 𝜒்(𝑢(𝑡ᇱ), 𝜀்௡) = 𝜒்(𝑢ெ(𝑡), 𝜀்௡) = ൜ 1,   𝑢ெ(𝑡) < 𝜀்௡0, 𝜀்௡ ≤ 𝑢ெ(𝑡)  
 
Consequently, the minimum of the window function in [0,t] occurs at the maximum value of the strain 
load, uM(t), and this minimum equals 1 if and only if uM(t) is less than the tensile breaking strain of the 
fiber, which is the statement given by Eq. (38). 
Eqs. (39) and (40) can be shown similarly.  
Definition:  
For alternating normal and shear strain loads, the so-called normal and shear duplex memory window 
functions (duplex MWF) are defined as: 
 𝜒஼்௡∗ ൫𝑢(𝑡)൯ = 𝜒஼்∗ (𝑢(𝑡), −𝜀஼௡ , 𝜀்௡) = min଴ஸ௧ᇲஸ௧ 𝜒஼்(𝑢(𝑡ᇱ), −𝜀஼௡, 𝜀்௡)    (41) 𝜒ିௌ,ௌ௡∗ ൫𝑤(𝑡)൯ = 𝜒ିௌ,ௌ∗ (𝑤(𝑡), −𝜀ିௌ௡, 𝜀ௌ௡) = min଴ஸ௧ᇲஸ௧ 𝜒ିௌ,ௌ(𝑤(𝑡ᇱ), −𝜀ିௌ௡, 𝜀ௌ௡)   (42) 
 
Statement:  
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For compressive and tensile alternating strain loads, the normal duplex MWF function, 𝜒஼்௡∗ , can be 
produced as the product of 𝜒஼௡∗  and 𝜒்௡∗ : 
 𝜒஼்௡∗ ൫𝑢(𝑡)൯ = 𝜒஼்∗ (𝑢(𝑡), −𝜀஼௡ , 𝜀்௡) = 𝜒஼௡∗ ൫𝑢(𝑡)൯𝜒்௡∗ ൫𝑢(𝑡)൯    (43) 
 
For negative and positive alternating shear strain loads, the shear duplex MWF, 𝜒ିௌ,ௌ௡∗ , can be 
produced as the product of 𝜒ିௌ௡∗  and 𝜒ௌ௡∗ : 
 𝜒ିௌ,ௌ௡∗ ൫𝑤(𝑡)൯ = 𝜒ିௌ,ௌ∗ (𝑤(𝑡), −𝜀ିௌ௡, 𝜀ௌ௡) = 𝜒ିௌ௡∗ ൫𝑤(𝑡)൯𝜒ௌ௡∗ ൫𝑤(𝑡)൯   (44) 
 
Proof: Considering the definitions and statements in Eqs. (21)-(24), (33)-(40), (41) and (42), and utilizing 
Eq. (A2) in Appendix A1, the statements in Eqs. (43) and (44) can be seen like the following for normal 
strain load. For example, with the use of Eqs. (41) and (24), Eq. (43) can be reformulated: 
 𝜒஼்௡∗ ൫𝑢(𝑡)൯ = min଴ஸ௧ᇲஸ௧ 𝜒஼்(𝑢(𝑡ᇱ), −𝜀஼௡, 𝜀்௡) = min଴ஸ௧ᇲஸ௧ 𝜒஼(𝑢(𝑡ᇱ), −𝜀஼௡)𝜒்(𝑢(𝑡ᇱ), 𝜀்௡) 
 
Considering Eqs. (33) and (34), and the fact that both C and T take up values 0 or 1, the minimum of 
their product in [0,t] may be 1 or 0 similar to that in Figure 4.a. It is 1 if and only if -Cn<um(t’) and 
uM(t’)<Tn or 0 if and only if um(t’)-Cn or TnuM(t’) at any 0t’t. Utilizing Eqs. (21), (23), (41), and (A2) 
and (A4) in Appendix A1 provides the statement in Eq. (42).  
 𝜒஼்௡∗ ൫𝑢(𝑡)൯ = min଴ஸ௧ᇲஸ௧ 𝜒஼்(𝑢(𝑡ᇱ), −𝜀஼௡, 𝜀்௡) = min଴ஸ௧ᇲஸ௧ 𝜒஼(𝑢(𝑡ᇱ), −𝜀஼௡)𝜒்(𝑢(𝑡ᇱ), 𝜀்௡) = = ൜1, −𝜀஼௡ < 𝑢௠(𝑡) 𝑎𝑛𝑑 𝑢ெ(𝑡) < 𝜀்௡0,   𝑢௠(𝑡) ≤ −𝜀஼௡  𝑜𝑟  𝜀்௡ ≤ 𝑢ெ(𝑡) = 𝜒஼(𝑢௠(𝑡), −𝜀஼௡)𝜒்(𝑢ெ(𝑡), 𝜀்௡) = 𝜒஼௡∗ ൫𝑢(𝑡)൯𝜒்௡∗ ൫𝑢(𝑡)൯  

 
since the equality for the window function values (1 and 0) stands for every t0. 
Eq. (43) can be shown similarly.  
 
2.3 Mechanical behavior of the fiber bundles 
 
The force and stress properties of the fiber bundle can be obtained by adding or averaging those of 
the single fibers. 
 
2.3.1 Monotone destructive load 
 
Empirical normal and shear reliability functions for monotone destructive load 
Applying Eqs. (27) and (28), the total normal and shear forces of the fiber bundle are given by: 
 𝐹(𝑢) = ∑ 𝐹௡(𝑢)ே௡ୀଵ = 𝑁𝐴଴𝜓(𝑢) ଵே ∑ 𝜎௡(𝑢)ே௡ୀଵ = 𝑁𝐴଴𝜓(𝑢)𝜎(𝑢)    (45) 𝐹ௌ(𝑤) = ∑ 𝐹ௌ௡(𝑤)ே௡ୀଵ = 𝑁𝑆଴ ଵே ∑ 𝜏௡(𝑤)ே௡ୀଵ = 𝑁𝑆଴𝜏(𝑤)     (46) 
 
Where 𝜎(𝑢) is the average fiber stress 𝜏(𝑤), the average fiber shear stress of the fiber bundle in the 
fiber direction. From the above and Eqs. (27) and (28), the mean normal and shear stresses acting in 
the fiber bundle are: 
 𝜎(𝑢) = ଵே ∑ 𝜎௡(𝑢)ே௡ୀଵ = 𝑢 ଵே ∑ 𝐸௡𝜒஼்(𝑢, −𝜀஼௡, 𝜀்௡)ே௡ୀଵ = 𝑢𝜅஼்(𝑢)    (47) 𝜏(𝑤) = ଵே ∑ 𝜏௡(𝑤)ே௡ୀଵ = 𝑤 ଵே ∑ 𝐺௡𝜒ିௌ,ௌ(𝑤, −𝜀ିௌ௡, 𝜀ௌ௡)ே௡ୀଵ = 𝑤𝜅ିௌ,ௌ(𝑤)   (48) 
 



13 
 

where CT(u), and -S,S(w) are the mean normal and shear duplex modulus functions of the bundle, 
respectively, which include the damage effects as well. When the moduli are constant in the bundle 
volume considered, that is, En=E and Gn=G (n=1,…,N), the modulus functions can be rewritten as: 
 𝜅஼்(𝑢) = 𝐸 ଵே ∑ 𝜒஼்(𝑢, −𝜀஼௡, 𝜀்௡)ே௡ୀଵ = 𝐸𝑟஼்(𝑢)    (49) 𝜅ିௌ,ௌ(𝑤) = 𝐺 ଵே ∑ 𝜒ିௌ,ௌ(𝑤, −𝜀ିௌ௡, 𝜀ௌ௡)ே௡ୀଵ = 𝐺𝑟 ௌ,ௌ(𝑤)   (50) 
 
where rCT(u) and r-S,S(u) are the empirical normal and shear duplex reliability functions (normal and 
shear duplex RFs) of the bundle, respectively: 
 0 ≤ 𝑟஼்(𝑢) = ଵே ∑ 𝜒஼்(𝑢, −𝜀஼௡, 𝜀்௡)ே௡ୀଵ ≤ 1      (51) 0 ≤ 𝑟 ௌ,ௌ(𝑤) = ଵே ∑ 𝜒ିௌ,ௌ(𝑤, −𝜀ିௌ , 𝜀ௌ௡)ே௡ୀଵ ≤ 1     (52) 
 
Let us introduce the empirical compressive (rC) and tensile (rT) (normal) as well as the negative (r-S) and 
positive (rS) shear (single) reliability functions (RFs): 
 0 ≤ 𝑟஼(𝑢) = ଵே ∑ 𝜒஼(𝑢, −𝜀஼௡)ே௡ୀଵ ≤ 1      (53) 0 ≤ 𝑟 (𝑢) = ଵே ∑ 𝜒்(𝑢, 𝜀்௡)ே௡ୀଵ ≤ 1      (54) 

 0 ≤ 𝑟 ௌ(𝑤) = ଵே ∑ 𝜒ିௌ(𝑤, −𝜀ିௌ௡)ே௡ୀଵ ≤ 1     (55) 0 ≤ 𝑟ௌ(𝑤) = ଵே ∑ 𝜒ௌ(𝑤, 𝜀ௌ௡)ே௡ୀଵ ≤ 1       (56) 
 
Statement: 
The empirical normal reliability function (n. RF) can be calculated as the product of the compressive 
and tensile empirical reliability functions: 
 𝑟஼்(𝑢) = 𝑟஼(𝑢)𝑟 (𝑢)       (57) 
 
Similarly, the empirical shear reliability function (s. RF) can be calculated as the product of the negative 
and positive empirical reliability functions: 
 𝑟 ௌ,ௌ(𝑢) = 𝑟 ௌ(𝑢)𝑟ௌ(𝑢)      (58) 
 
Proof: It is enough to prove Eq. (57). Taking into consideration the definition of the window functions 
and the fact that, because of averaging, rT and rS equal 1 if u<0, and rC and r-S equal 1 if u>0, let us detail 
the expression of rCT with Eq. (57): 
 𝑟஼்(𝑢) = ൝𝑟஼(𝑢) ∙ 1,   𝑢 < 01,      𝑢 = 01 ∙ 𝑟 (𝑢),   0 < 𝑢 = ൝𝑟஼(𝑢),   𝑢 < 01,      𝑢 = 01,   0 < 𝑢 ∙ ൝ 1,   𝑢 < 01,      𝑢 = 0𝑟 (𝑢),   0 < 𝑢 = 𝑟஼(𝑢)𝑟 (𝑢) 

 
For shear strain load, Eq. (58) can be seen in a similar way.  
 
Graphical demonstration 
The empirical reliability functions as the mean of the fiber window functions give the decreasing 
fraction of the fibers intact at the strain load u. Figure 6 shows an example of them when the E-bundle 
consists of 7 fibers. 
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(a)                                                                 (b) 

Figure 6 Example of the empirical compressive and tensile reliability functions of a 7-fiber bundle (a) 
and its empirical normal reliability function (b) 

 
As another example, Figure 7 shows the empirical tensile reliability function of a 7-fiber bundle and 
the tensile force response to a monotone increasing strain load. 

  
(a)                                                                 (b) 

Figure 7 Example of the empirical reliability function and the tensile force response of a 7-fiber 
bundle (k(x)=x; Ti = 5, 7, 10, 13, 15, 17, 19) 

 
All the mechanical parameters of the fibers are stochastic variables, therefore the functions introduced 
and discussed above are un-stationary stochastic processes. 
 
Expected value process of the normal and shear stresses for monotone destructive load 
In the case of the usual monotone strain load, the expectations of the window function of the single 
fibers are related reliability functions of the fiber bundles, which can be given by the distribution 
functions of the corresponding breaking strains of the fibers. We show that through two statements. 
Statement 
The expectations of the related window functions of the fibers are given by the distribution functions 
of the compressive or tensile normal (Cn and Tn), or the negative and positive shear (-Sn and Sn) 
breaking strains of the fibers: 𝔼൫𝜒(𝑢, −𝜀஼௡)൯ = 𝑃 ఌ಴(𝑢)      (59) 𝔼൫𝜒(𝑢, 𝜀்௡)൯ = 1 − 𝑃ఌ೅(𝑢)      (60) 𝔼൫𝜒ିௌ(𝑤, −𝜀ିௌ )൯ = 𝑃 ఌషೄ(𝑤)      (61) 𝔼൫𝜒ௌ(𝑤, 𝜀)൯ = 1 − 𝑃ఌೄ(𝑤)      (62) 
 
where in general, 𝔼(X) denotes the expected value of the stochastic variable X. 
Proof: It is enough to prove the normal strain load cases since those for the shear loads can be seen in 
a similar way. Based on the definitions of the normal window functions given by Eqs. (17) and (18), we 
obtain for their expectations: 
 𝔼൫𝜒(𝑢, −𝜀஼௡)൯ = 1ℙ(𝜒஼ = 1) + 0ℙ(𝜒஼ = 0) = ℙ(𝜒஼ = 1) = ℙ(−𝜀஼௡ < 𝑢) = 𝑃 ఌ಴(𝑢) 
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𝔼൫𝜒(𝑢, 𝜀்௡)൯ = 1ℙ(𝜒் = 1) + 0ℙ(𝜒் = 0) = ℙ(𝜒் = 1) = ℙ(𝜀்௡ ≥ 𝑢) = 1 − 𝑃ఌ೅(𝑢) 
 
where ℙ(A) denotes the probability of event A.  
A similar statement is true for the expectation of the empirical reliability functions. 
Statement 
Let RC(u) and RT(u), and R-S(u) and RS(u) denote the expectations of the compressive and tensile normal, 
and negative and positive shear empirical reliability functions (RFs) of the fiber bundles (Eqs. (53)-(56)), 
respectively. They are identical with the expectations of the related window functions: 
 𝑅஼(𝑢) = 𝔼൫𝑟஼(𝑢)൯ = 𝔼൫𝜒(𝑢, −𝜀஼௡)൯ = 𝑃 ఌ಴(𝑢)     (63) 𝑅்(𝑢) = 𝔼൫𝑟 (𝑢)൯ = 𝔼൫𝜒(𝑢, 𝜀்௡)൯ = 1 − 𝑃ఌ೅(𝑢)     (64) 𝑅ିௌ(𝑢) = 𝔼൫𝑟 ௌ(𝑢)൯ = 𝔼൫𝜒(𝑢, −𝜀ିௌ௡)൯ = 𝑃 ఌషೄ(𝑢)     (65) 𝑅ௌ(𝑢) = 𝔼൫𝑟ௌ(𝑢)൯ = 𝔼൫𝜒(𝑢, 𝜀ௌ௡)൯ = 1 − 𝑃ఌೄ(𝑢)     (66) 
 
Proof: Now, it is enough to see one of them for example that for the normal tensile strain load. Using 
the definition of rT(u) given by Eq. (54) and utilizing the linearity of the expected value operator 𝔼(.)41, 

42 – meaning that 𝔼(.) and  are exchangeable – and the assumption that the distribution function of 
the breaking strain is the same for the fibers, we obtain: 
 𝑅்(𝑢) = 𝔼൫𝑟 (𝑢)൯ = 1𝑁 ෍ 𝔼൫𝜒(𝑢, 𝜀்௡)൯ே

௡ୀଵ = 𝔼൫𝜒(𝑢, 𝜀்௡)൯ = 1 − 𝑃ఌ೅(𝑢) 

 
where the last equation is given by Eq. (60).  
Similarly, the expectation of the empirical normal or shear reliability functions is the product of the 
expected empirical compressive and tensile normal or the negative and positive shear reliability 
functions, respectively, as in the next statement.  
Statement 
The expectation of the empirical normal and the shear duplex RFs denoted by RCT(u) and R-S,S(u) can be 
expressed with the following products: 
 𝑅஼்(𝑢) = 𝔼൫𝑟஼்(𝑢)൯ = 𝔼൫𝜒஼்(𝑢, −𝜀஼௡, 𝜀்௡)൯ = 𝑅஼(𝑢)𝑅்(𝑢)     (67) 𝑅ିௌ,ௌ(𝑢) = 𝔼 ቀ𝑟 ௌ,ௌ(𝑢)ቁ = 𝔼 ቀ𝜒ିௌ,ௌ(𝑢, −𝜀ିௌ௡, 𝜀ௌ௡)ቁ = 𝑅ିௌ(𝑢)𝑅ௌ(𝑢)    (68) 
 
Proof: The expected value of Eqs. (57) and (58) provides Eqs. (67) and (68) since, according to the 
assumptions for the breaking strains that are independent stochastic variables, the factors of rCT(u) or 
r-S,S(u) are also independent of each other. The internal expected values in Eqs. (67) and (68) are given 
by the expectations of Eqs. (51) and (52).  
Using Eqs. (47) and) (48) and utilizing the linearity of the expected value operator 𝔼(.)29, 30 —meaning 
that 𝔼(.) and  are exchangeable—and the independency of En or Gn and the related breaking strains, 
the expected value of the total normal and shear stresses of the corresponding fiber bundles are given 
by: 
 𝜎ത(𝑢) = 𝔼൫𝜎(𝑢)൯ = 𝑢𝔼൫𝜅஼்(𝑢)൯ = 𝑢 ଵே ∑ 𝔼(𝐸௡)𝔼[𝜒஼்(𝑢, −𝜀஼௡ , 𝜀்௡)]ே௡ୀଵ = 𝐸ത𝑢𝑅஼்(𝑢)       (69) 𝜏̅(𝑤): = 𝔼൫𝜏(𝑤)൯ = 𝑤𝔼 ቀ𝜅ିௌ,ௌ(𝑤)ቁ = 𝑤 ଵே ∑ 𝔼(𝐺௡)𝔼ൣ𝜒ିௌ,ௌ(𝑤, −𝜀ିௌ௡, 𝜀ௌ௡)൧ே௡ୀଵ = 𝐺̅𝑤𝑅ିௌ,ௌ(𝑤)  (70) 

 
where 𝐸ത  and 𝐺̅ are the mean tensile and shear moduli of the fibers, respectively.  
 



16 
 

Graphical demonstration 
Eq. (67) is demonstrated with an example in Figure 8, where the distribution functions of the 
compressive and tensile breaking strains were considered normal with different expectations and 
standard deviations. 

 
 (a)                                                                 (b) 

Figure 8 Example of the expected compressive and tensile reliability functions of a fiber bundle 
(𝔼(C)=2.5, 𝔼(T)=3.5) (a) and its expected double normal reliability function (b) 

 
In Figure 9, the distribution of the compressive (C) and tensile (T) breaking strains were also regarded 
as normal distribution but with parameters N(-0,7; 0,22) and N(1; 0,252), respectively. The related 
reliability function of the E-bundle can be seen in Figure 9.a, while the expected compressive–tensile 
force curve calculated with Eq. (69) is shown in Figure 9.b. 

  
(a)                                                                 (b) 

Figure 9 The duplex normal reliability function (a) and the response force process the E-bundle gives 
to a monotone increasing strain load (b) 

2.3.2 Alternating destructive loads 
 
Empirical normal and shear reliability functions for an alternating destructive load 
For an alternating strain load, Eqs. (45) and (46) also provide the bundle force formally. However, 
within them, the stress functions given by Eqs. (47) and (48) valid for monotone strain load should be 
changed because of the alternation. With the use of Eqs. (41) and (42), the total normal and shear 
forces of the fiber bundle are: 
 𝜎൫𝑢(𝑡)൯ = ଵே ∑ 𝜎௡൫𝑢(𝑡)൯ே௡ୀଵ = 𝑢(𝑡) ଵே ∑ 𝐸௡𝜒஼்∗ (𝑢(𝑡), −𝜀஼௡, 𝜀்௡)ே௡ୀଵ = 𝑢(𝑡)𝜅஼்∗ ൫𝑢(𝑡)൯   (71) 𝜏(𝑤(𝑡)) = ଵே ∑ 𝜏௡൫𝑤(𝑡)൯ே௡ୀଵ = 𝑤(𝑡) ଵே ∑ 𝐺௡𝜒ିௌ,ௌ∗ (𝑤(𝑡), −𝜀ିௌ௡, 𝜀ௌ௡)ே௡ୀଵ = 𝑤(𝑡)𝜅ିௌ,ௌ∗ ൫𝑤(𝑡)൯  (72) 
 
where 𝜅஼்∗ (u), and 𝜅ିௌ,ௌ∗ (w) are the mean normal and shear memory modulus functions of the bundle, 
respectively, which include the damage effects as well. As above, when the moduli are considered 
constant in the bundle volume, that is, En=E and Gn=G (n=1,…,N), the modulus functions given by Eqs. 
(49) and (50) for a monotone strain load should be rewritten too: 
 𝜅஼்∗ ൫𝑢(𝑡)൯ = 𝐸 ଵே ∑ 𝜒஼்∗ (𝑢(𝑡), −𝜀஼௡ , 𝜀்௡)ே௡ୀଵ = 𝐸𝑟஼∗் ൫𝑢(𝑡)൯    (73) 
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𝜅ିௌ,ௌ∗ ൫𝑤(𝑡)൯ = 𝐺 ଵே ∑ 𝜒ିௌ,ௌ∗ (𝑤(𝑡), −𝜀ିௌ௡, 𝜀ௌ௡)ே௡ୀଵ = 𝐺𝑟 ௌ,ௌ∗ ൫𝑤(𝑡)൯   (74) 
 
where 𝑟஼∗் (u) and 𝑟 ௌ,ௌ∗ (u) are the empirical normal and shear duplex MRFs of the bundle, respectively: 
 𝑟஼∗் (𝑢) = ଵே ∑ 𝜒஼்∗ (𝑢(𝑡), −𝜀஼௡ , 𝜀்௡)ே௡ୀଵ ≤ 1      (75) 𝑟 ௌ,ௌ∗ (𝑤) = ଵே ∑ 𝜒ିௌ,ௌ∗ (𝑤(𝑡), −𝜀ିௌ௡, 𝜀ௌ௡)ே௡ୀଵ ≤ 1     (76) 
 
Let us introduce the empirical compressive (𝑟஼∗) and tensile (𝑟∗) normal as well as the negative (𝑟 ௌ∗ ) 
and positive (𝑟ௌ∗) shear (single) MRs: 
 𝑟஼∗(𝑢) = ଵே ∑ 𝜒஼∗(𝑢(𝑡), −𝜀஼௡)ே௡ୀଵ ≤ 1      (77) 𝑟∗(𝑢) = ଵே ∑ 𝜒∗் (𝑢(𝑡), 𝜀்௡)ே௡ୀଵ ≤ 1     (78) 

 𝑟 ௌ∗ (𝑤) = ଵே ∑ 𝜒ିௌ∗ (𝑤(𝑡), −𝜀ିௌ௡)ே௡ୀଵ ≤ 1     (79) 𝑟ௌ∗(𝑤) = ଵே ∑ 𝜒ௌ∗(𝑤(𝑡), 𝜀ௌ௡)ே௡ୀଵ ≤ 1     (80) 
 
Expected value process of the normal and shear stresses for an alternating destructive load 
Using Eqs. (71), (72), (75), (76) and utilizing the exchangeability of 𝔼(.) and , and the independency of 
En or Gn and the normal or shear breaking strains, the expected value of the total normal and shear 
stresses of the related fiber bundles can be obtained as follows: 
 𝜎ത൫𝑢(𝑡)൯ ≔ 𝔼 ቀ𝜎൫𝑢(𝑡)൯ቁ = 𝑢(𝑡)𝔼 ቀ𝜅஼்∗ ൫𝑢(𝑡)൯ቁ = 𝑢(𝑡) 1𝑁 ෍ 𝔼(𝐸௡)𝔼[𝜒஼்∗ (𝑢(𝑡), −𝜀஼௡, 𝜀்௡)]ே

௡ୀଵ = 𝔼(𝐸௡)𝑢(𝑡)𝔼 ቀ𝑟஼∗் ൫𝑢(𝑡)൯ቁ = 𝐸ത𝑢(𝑡)𝑅஼்∗ (𝑢(𝑡))    (81) 𝜏̅൫𝑤(𝑡)൯ ≔ 𝔼 ቀ𝜏൫𝑤(𝑡)൯ቁ = 𝑤(𝑡)𝔼 ቀ𝜅ିௌ,ௌ∗ ൫𝑤(𝑡)൯ቁ = 𝑤(𝑡) 1𝑁 ෍ 𝔼(𝐺௡)𝔼ൣ𝜒ିௌ,ௌ∗ (𝑤(𝑡), −𝜀ିௌ௡, 𝜀ௌ௡)൧ே
௡ୀଵ = 𝔼(𝐺௡)𝑤(𝑡)𝔼 ቀ𝑟 ௌ,ௌ∗ ൫𝑤(𝑡)൯ቁ = 𝐺̅𝑤(𝑡)𝑅ିௌ,ௌ∗ (𝑤(𝑡)) (82) 

 
where 𝑅஼்∗ (u) and 𝑅ିௌ,ௌ∗ (w) are the expected normal and shear duplex MRFs of the related bundles, 
respectively, which are the expected value of the empirical normal and the shear memory reliability 
functions 𝑟஼∗் (𝑢) and 𝑟 ௌ,ௌ∗ (𝑤): 
 𝑅஼்∗ ൫𝑢(𝑡)൯ = 𝔼 ቀ𝑟஼∗் ൫𝑢(𝑡)൯ቁ = ଵே ∑ 𝔼[𝜒஼்∗ (𝑢(𝑡), −𝜀஼௡ , 𝜀்௡)]ே௡ୀଵ = 𝔼[𝜒஼்∗ (𝑢(𝑡), −𝜀஼௡, 𝜀்௡)]  (83) 𝑅ିௌ,ௌ∗ ൫𝑤(𝑡)൯ = 𝔼 ቀ𝑟 ௌ,ௌ∗ ൫𝑤(𝑡)൯ቁ = ଵே ∑ 𝔼ൣ𝜒ିௌ,ௌ∗ (𝑤(𝑡), −𝜀஼௡, 𝜀்௡)൧ே௡ୀଵ    (84) 
 
Similarly to Eqs. (83) and (84), the expected compressive and tensile (normal) MRFs  
 𝑅஼∗ ൫𝑢(𝑡)൯ = 𝔼 ቀ𝑟஼∗൫𝑢(𝑡)൯ቁ = 𝔼൫𝜒஼∗ (𝑢(𝑡), −𝜀஼௡)൯    (85) 𝑅∗் ൫𝑢(𝑡)൯ = 𝔼 ቀ𝑟∗൫𝑢(𝑡)൯ቁ = 𝔼൫𝜒∗் (𝑢(𝑡), 𝜀்௡)൯     (86) 
 
and the expected negative and positive shear MRFs of the fibers can be defined: 
 𝑅ିௌ∗ ൫𝑤(𝑡)൯ = 𝔼 ቀ𝑟 ௌ∗ ൫𝑤(𝑡)൯ቁ = 𝔼൫𝜒ିௌ∗ (𝑤(𝑡), −𝜀ିௌ௡)൯    (87) 
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𝑅ௌ∗൫𝑤(𝑡)൯ = 𝔼 ቀ𝑟ௌ∗൫𝑤(𝑡)൯ቁ = 𝔼൫𝜒ௌ∗(𝑤(𝑡), 𝜀ௌ௡)൯    (88) 
 
Statement 
The expected compressive and tensile (normal) MRFs of the fibers can be obtained as follows: 
 𝑅஼∗ ൫𝑢(𝑡)൯ = 𝔼൫𝜒஼∗ (𝑢(𝑡), −𝜀஼௡)൯ = 𝑃 ఌ಴൫𝑢௠(𝑡)൯ = 𝑅஼൫𝑢௠(𝑡)൯ = min଴ஸ௧ᇱஸ௧ 𝑅஼(𝑢(𝑡ᇱ))  (89) 𝑅∗் ൫𝑢(𝑡)൯ = 𝔼൫𝜒∗் (𝑢(𝑡), 𝜀்௡)൯ = 1 − 𝑃ఌ೅൫𝑢ெ(𝑡)൯ = 𝑅்൫𝑢ெ(𝑡)൯ = min଴ஸ௧ᇱஸ௧ 𝑅்(𝑢(𝑡ᇱ))  (90) 
 
Similarly, the expected negative and positive shear MRFs are: 
 𝑅ିௌ∗ ൫𝑤(𝑡)൯ = 𝔼൫𝜒ିௌ∗ (𝑤(𝑡), −𝜀ିௌ )൯ = 𝑃 ఌషೄ൫𝑤௠(𝑡)൯ = 𝑅ିௌ൫𝑤௠(𝑡)൯ = min଴ஸ௧ᇱஸ௧ 𝑅ିௌ(𝑤(𝑡ᇱ)) (91) 𝑅ௌ∗൫𝑤(𝑡)൯ = 𝔼൫𝜒ௌ∗(𝑤(𝑡), 𝜀ௌ௡)൯ = 1 − 𝑃ఌೄ൫𝑤ெ(𝑡)൯ = 𝑅ௌ൫𝑤ெ(𝑡)൯ = min଴ஸ௧ᇱஸ௧ 𝑅ௌ(𝑤(𝑡ᇱ))   (92) 
 
Proof: This can be shown by applying the definition of the MRFs given by Eqs. (33) and (34) and utilizing 
the properties of the expected value and Eqs. (A2) and (A4) in Appendix A1: 
 𝑅஼∗ ൫𝑢(𝑡)൯ = 𝔼൫𝜒஼∗ (𝑢(𝑡), −𝜀஼௡)൯ = 1ℙ(𝜒஼∗ = 1) + 0ℙ(𝜒஼∗ = 0) = ℙ(𝜒஼∗ = 1) = ℙ൫−𝜀஼௡ < 𝑢௠(𝑡)൯= 𝑃 ఌ಴(𝑢௠(𝑡)) = min଴ஸ௧ᇱஸ௧ 𝑅஼(𝑢(𝑡ᇱ)) 𝑅∗் ൫𝑢(𝑡)൯ = 𝔼൫𝜒∗் (𝑢(𝑡), 𝜀்௡)൯ = 1ℙ(𝜒∗் = 1) + 0ℙ(𝜒∗் = 0) = ℙ(𝜒∗் = 1) = ℙ൫𝜀்௡ ≥ 𝑢ெ(𝑡)൯= 1 − 𝑃ఌ೅(𝑢ெ(𝑡)) = min଴ஸ௧ᇱஸ௧ 𝑅்(𝑢(𝑡ᇱ)) 
 
so they can be given by the distribution functions of the compressive and tensile breaking strains of 
the fibers, respectively. For a shear strain load, Eqs. (91) and (92) can be proved in a similar way.  
Statement 
The expected normal duplex MRF (𝑅஼்∗ ) is the product of the compressive (𝑅஼∗ ) and tensile (𝑅∗் ) 
memory reliability functions: 𝑅஼்∗ ൫𝑢(𝑡)൯ = 𝑅஼∗ (𝑢(𝑡))𝑅∗் (𝑢(𝑡))      (93) 
 
while the expected shear duplex MRF (𝑅ିௌ,ௌ∗ ) is the product of the compressive (𝑅ିௌ∗ ) and tensile (𝑅ௌ∗) 
memory reliability functions: 𝑅ିௌ,ௌ∗ ൫𝑤(𝑡)൯ = 𝑅ିௌ∗ ൫𝑤(𝑡)൯𝑅ௌ∗൫𝑤(𝑡)൯      (94) 
 
Proof: Eq. (93) can be shown with some consecutive operations. Firstly, we applied Eq. (83), then Eq. 
(43) to convert 𝜒஼்∗  into product form. Afterward, based on Eqs. (37) and (38), we utilized the facts 
that uM(t) and RC are monotone increasing functions, while um(t) and RT are monotone decreasing (see 
Appendix A1) and, on the other hand, C and T are independent of each other: 
 𝑅஼்∗ ൫𝑢(𝑡)൯ = 𝔼 ቀ𝑟஼∗் ൫𝑢(𝑡)൯ቁ = 𝔼[𝜒஼்∗ (𝑢(𝑡), −𝜀஼௡ , 𝜀்௡)] = 𝔼[𝜒஼∗ (𝑢(𝑡), −𝜀஼௡)𝜒∗் (𝑢(𝑡), 𝜀்௡)] =𝔼[𝜒஼(𝑢௠(𝑡), −𝜀஼௡)𝜒஼(𝑢ெ(𝑡), 𝜀்௡)] = 𝔼[𝜒஼(𝑢௠(𝑡), −𝜀஼௡)]𝔼[𝜒்(𝑢ெ(𝑡), 𝜀்௡)] =𝑅஼൫𝑢௠(𝑡)൯𝑅்൫𝑢ெ(𝑡)൯ = 𝑅஼∗ (𝑢(𝑡))𝑅∗் (𝑢(𝑡))  
 
For the shear strain load, a similar method can be used.  
Graphical demonstrations 
Figure 10 shows the expected MRF (Figure 10.a) and the expected normalized tensile bundle force 
(Figure 10.b) as the response to the pulsating tensile bundle strain (see Figure 5.a), u=x, when the 
tensile characteristic function of the fibers is k(x)=x.  
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(a) (b) 

Figure 10. The expected memory reliability function (a) and the expected normalized tensile bundle 
force (b) in the case of a pulsating tensile strain load 

 
The more and more decreasing slope of the force process in Figure 10.b is caused by the accumulating 
tensile damage. After each damage sub-process, the reliability level decreases and so does the tensile 
stiffness of the material as well. 
Figures 11.a and 11.b show the interaction of the failures caused by an alternating compressive and 
tensile strain load (Figure 5.b), where the compressive breaking strain is smaller than the tensile 
breaking strain. The steepness of the non-symmetric normalized force–deformation curve decreases 
more and more, which is the effect of the accumulating non-symmetric compressive and tensile 
damage. The loop-like shape of the stress-strain curve is the result of the interaction of the alternating 
tensile and compression load-caused damages reducing the global reliability. 
 

  
(a)                                                                 (b) 

Figure 11 The expected normal MRF of the E-bundle (a) and the expected compressive–tensile force 
process for monotone increasing (blue lines) and alternating (red lines) normal strain load  

 
Figures 12.a and 12.b show the interaction of the failures caused by negative and positive shear strain 
load, and the more and more decreasing slope of the normalized (kS(x)=x) shear force–deformation 
function as an effect of the accumulating “quasi-symmetrical” damage. 
 

  
(a)                                                                 (b)  

Figure 12 The expected shear MRF of the E-bundle (a) and the expected negative-positive shear force 
process for monotone increasing (blue lines) and alternating (red lines) shear strain load 
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The Cohesive Zone Method as a simplified bundle model 
The simplified form of the Cohesive Zone Method (CZM)8, 9 is the so-called bi-linear CZM model, where 
the traction-separation law has a triangle shape. It has often been used to describe failure phenomena 
in finite element (FEM) simulations8-12. Actually, as it is demonstrated in Figure 13, the bi-linear CZM 
model may be considered, which approximates the expected normalized (k(x)=x) tensile force of an E-
bundle (F(x)) with the initial tangent (F0_(x)) of the ascending part and the inflexion tangent (F1_(x)) 
of the descending part.  
 

 
Figure 13 Demonstration of the bi-linear CZM model as the tangent approximation of the E-bundle 

model 
 
Hence, the F(x) tensile process of the CZM model can easily be given in the product form if the reliability 
function is as follows:  𝑅(𝑥) = ቐ1,                                                   𝑥 = 0𝑚𝑎𝑥 ቆ0; 𝑚𝑖𝑛 ቀ1; ଵ௫ ௫బି௫௫బି௫భቁቇ ,    𝑥 > 0    (95) 

 
where x0 and x1 are constant parameters, so (x0):  
 𝐹(𝑥) = x𝑅(𝑥) = x ∙ 𝑚𝑎𝑥 ቆ0; 𝑚𝑖𝑛 ቀ1; ଵ௫ ௫బି௫௫బି௫భቁቇ = 𝑚𝑎𝑥 ቆ0; 𝑚𝑖𝑛 ቀ𝑥; ௫బି௫௫బି௫భቁቇ        (96) 

 
The memory reliability function, R*(x), visible in Figure 14.a can be obtained from Eq. (29) with the use 
of the definition given by Eqs. (36) and (95). Figure 14.b shows the CZM normalized force–strain curve 
calculated with Eq. (96) and the specific force variation responding to the pulsating tensile strain load 
in Figure 4.a. 

 

  
(a)                                                                 (b) 

Figure 14 The CZM reliability function (x0=1,5; x1=1) (a) and the related normalized tensile force as 
the response to a pulsating tensile strain load (b) 
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Corollary and remarks 
Because of the stochastic convergence of the mean41, 42 following from the conditions for the 
stochastic strength parameters, it is obvious that if the number of fibers (N) is large enough, the 
empirical memory-reliability functions (𝑟௑∗ 𝑎𝑛𝑑 𝑟௑,௒∗ ; X,Y{C,T,-S,S} ) tend to their expectations when 
N. Consequently, for example, the following relationship approximately stands for a large enough 
N: 
 𝑟஼∗் ൫𝑢(𝑡)൯ = ଵே ∑ 𝜒஼்∗ (𝑢(𝑡), −𝜀஼௡, 𝜀்௡)ே௡ୀଵ ≈ 𝔼 ቀ𝑟஼∗் ൫𝑢(𝑡)൯ቁ = 𝑅஼்∗ ൫𝑢(𝑡)൯       (97) 
 
On the other hand, averaging the empirical memory reliability functions obtained from different 
independent measurements or observations, the average stochastically converges to the expectation 
when the number of the measurements (M) tends to . For example: 
 𝑟̅஼∗் ൫𝑢(𝑡)൯ = ଵெ ∑ 𝑟஼்,௠∗ ൫𝑢(𝑡)൯ெ௠ୀଵ ≈ 𝔼 ቀ𝑟஼∗் ൫𝑢(𝑡)൯ቁ = 𝑅஼்∗ ൫𝑢(𝑡)൯       (98) 
 
Accordingly, the following statement can be formulated as the corollary of Eqs. (93) and (94). 
Statement  
The mean empirical normal MRF can be calculated approximately as the product of the mean 
compressive and tensile empirical reliability functions: 
 𝑟̅஼∗் (𝑢) ≈ 𝑟̅஼∗(𝑢)𝑟்̅∗(𝑢)       (99) 
 
Similarly, the mean empirical shear MRF can be approximately calculated as the product of the mean 
negative and positive empirical reliability functions: 
 𝑟ି̅ ௌ,ௌ∗ (𝑤) ≈ 𝑟ି̅ ௌ∗ (𝑤)𝑟ି̅ ௌ∗ (𝑤)      (100) 
 
Proof: Based on the stochastic convergence of the sample mean to the finite expected value [41, 42], 
Eqs. (99) and (100) follow from Eqs. (93) and (94), respectively.  
Remarks 
 Eqs. (93) and (94) are of great importance for subsequent calculations. Namely, they make it possible 
to determine the normal or shear MRFs using the minimum and maximum of the strain load given by 
Eqs. (31) and (32), which can be directly calculated from time-dependent input, that is, the controlled 
strain load.  𝑅஼்∗ (𝑢(𝑡)) = 𝑅஼∗ (𝑢(𝑡))𝑅∗் (𝑢(𝑡)) = 𝑅஼൫𝑢௠(𝑡)൯𝑅்൫𝑢ெ(𝑡)൯     (101) 
 𝑅ିௌ,ௌ∗ ൫𝑤(𝑡)൯ = 𝑅ିௌ∗ ൫𝑤(𝑡)൯𝑅ௌ∗൫𝑤(𝑡)൯ = 𝑅ିௌ൫𝑤௠(𝑡)൯𝑅ௌ൫𝑤ெ(𝑡)൯    (102) 
 
In addition, the product form of Eqs. (93) and (94) make it possible to apply useful separations for 
further derivations. 
It may also be mentioned that in the deterministic case the inequality (A9) in Appendix A1.3 stands 
instead of Eq. (93) or (94). This is because in the deterministic case, there is only one way for the 
minimum to decrease—to follow the graph of function g(x). In contrast to that, in the stochastic case, 
the reliability function is the expectation of several different failure ways including the deterministic 
way, as well. Hence, the graph is the upper borderline of the possible failure modes. These are 
demonstrated in Appendix A2.  

3 LINEAR ELASTIC MATERIAL LAW INCLUDING FAILURES 
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To create a useful approach to the stochastic linear material law that includes the effects of the 
damage caused by different types of strain load, we applied E-bundle models discussed above. To make 
the law general, we assumed that all the controlled strain load components (kl) may be of alternating 
type. To describe the stochastic damage and failure processes, we assigned an E-bundle to every strain 
load component. We assumed that there is no plastic strain and any type of damage can be modeled 
by virtual fiber breakage. Subsequently, the stochastic behavior of matrices or composite functions 
containing empirical reliability functions as elements or variables, respectively, is designated with an  
over-tilde~ and the memory property is denoted with an upper asterisk* (e.g. C෨ ∗,  𝜎෥ ∗, 𝑁෩∗). The 
expectation of these expressions has the memory property as well, therefore it is indicated by the 
asterisk (e.g. C∗, 𝜎∗,  𝑁∗) (see Notation). All that enabled to apply the empirical memory reliability 
functions (r*) of the related E-bundles which are special stochastic processes, and so are every matrix 
and every composite function that contains them as elements or a variable, respectively. Finally, we 
assumed that all the components of the materials such as the fibers and the matrix are linear elastic 
materials. 
 
3.1 General Hooke’s material model 
 
In the case of a multiaxial controlled strain load, a linear elastic anisotropic material follows the so-
called general Hooke’s material model, the tensorial form of which is given by4, 5: 
 𝐒 = 𝐂: 𝐃 ↔  𝜎௜௝ = 𝑐௜௝௞௟𝜀௞௟     (103) 
 
where D and S are the 2nd order deformation and stress tensors, respectively, while C is the 4th-order 
constant stiffness tensor and the symbol ‘:’ denotes the so-called two-dot product4, 5. The right-hand 
side of Eq. (103) gives an equivalent description of the relationship, where ij, cijkl, and kl (i, j, k, l=1, 2, 
3) are the scalar elements of tensors S, C, and D, respectively. Here, we applied Einstein’s convention1-

5 meaning summing the product from 1 to 3 for the same factor indices. Hence, the number of the 
tensor elements is 34=9x9=81. The compacted matrix form of Eq. (103) is: 
 σ = C ε     ↔    𝜎௜ = 𝑐௜௝𝜀௝     (104) 
 
where C is the 6x6 symmetric stiffness matrix (cij=cji) as used in composite mechanics1-3, while, 
following the Voigt notation1-5, σ and ε are the 6-dimensional stress and deformation vectors 
containing only the independent re-indexed scalar elements of S and D, respectively: 
 

𝜎 = ⎣⎢⎢
⎢⎢⎡
𝜎ଵ𝜎ଶ𝜎ଷ𝜎ସ𝜎ହ𝜎଺⎦⎥⎥

⎥⎥⎤ = ⎣⎢⎢
⎢⎢⎡
𝜎ଵଵ𝜎ଶଶ𝜎ଷଷ𝜎ଵଶ𝜎ଶଷ𝜎ଵଷ⎦⎥⎥

⎥⎥⎤ = C ⎣⎢⎢
⎢⎢⎡
𝜀ଵଵ𝜀ଶଶ𝜀ଷଷ𝜀ଵଶ𝜀ଶଷ𝜀ଵଷ⎦⎥⎥

⎥⎥⎤ = C ⎣⎢⎢
⎢⎢⎡
𝜀ଵ𝜀ଶ𝜀ଷ𝜀ସ𝜀ହ𝜀଺⎦⎥⎥

⎥⎥⎤ = ⎣⎢⎢
⎢⎢⎡
𝑐ଵଵ 𝑐ଵଶ 𝑐ଵଷ 𝑐ଵସ 𝑐ଵହ 𝑐ଵ଺𝑐ଶଵ 𝑐ଶଶ 𝑐ଶଷ 𝑐ଶସ 𝑐ଶହ 𝑐ଶ଺𝑐ଷଵ 𝑐ଷଶ 𝑐ଷଷ 𝑐ଷସ 𝑐ଷହ 𝑐ଷ଺𝑐ସଵ 𝑐ସଶ 𝑐ସଷ 𝑐ସସ 𝑐ସହ 𝑐ସ଺𝑐ହଵ 𝑐ହଶ 𝑐ହଷ 𝑐ହସ 𝑐ହହ 𝑐ହ଺𝑐଺ଵ 𝑐଺ଶ 𝑐଺ଷ 𝑐଺ସ 𝑐଺ହ 𝑐଺଺⎦⎥⎥

⎥⎥⎤
⎣⎢⎢
⎢⎢⎡
𝜀ଵ𝜀ଶ𝜀ଷ𝜀ସ𝜀ହ𝜀଺⎦⎥⎥

⎥⎥⎤ = C ε       (105) 

 
3.2 FBC–based linear elastic material law 
 

3.2.1 Description with stochastic tensors with the use of finite E-bundles 
 
Based on the considerations made above, assume that—as a kind of phenomenological modeling—an 
empirical duplex MRF, 𝑟௞௟∗ (𝜀௞௟) belongs to each controlled alternating strain load element ukl=kl(t) 
(k,l=1,2,3), and their product may be called damaging strain: 
 𝜀௞௟∗ = 𝜀௞௟𝑟௞௟∗ (𝜀௞௟) = 𝜀௞௟ min଴ஸ௧ᇱஸ௧ 𝑟௞௟(𝜀௞௟(𝑡′)) = 𝜀௞௟ min଴ஸ௧ᇱஸ௧ ଵேೖ೗ ∑ 𝜒(𝜀௞௟(𝑡ᇱ); 𝜀ି஻௞௟ , 𝜀ା஻௞௟)ேೖ೗௟ୀଵ       (106) 
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where Nkl is the fiber number of the bundle assigned to the strain load kl as well as -Bkl and +Bkl are 
the negative and positive breaking strain, which are stochastic variables. If k=l then kl is normal 
compressive (-B=C) or tensile (B=T) strain, while kl means negative or positive shear (B=S) strain. 
Supposing that the scalar elements, cijkl, of tensor C are constant (elasticity constants), and taking into 
account Eqs. (103) and (106), the tensorial form of the material law including the damages is as 
follows: 
 𝐒෨∗ = 𝐂: 𝐃෩ ∗ = 𝐂: 𝐑෩∗: 𝐃 ↔  𝜎௞௟∗ = 𝑐௜௝௞௟𝜀௞௟∗ = 𝑐௜௝௞ሖ ௟ሖ𝑟௞ሖ ௟ሖ∗ (𝜀௞௟)𝜀௞௟    (107) 
 
where 𝐑෩∗ is the 4th-order duplex empirical duplex memory reliability (empirical DMR) tensor, shortly 
empirical DMR tensor or empirical reliability tensor. The latter depends on the strain tensor D, yet the 
operations of linear algebra may be applied to the product form of Eq. (107). Hence, similar to Eq. 
(104), the matrix form of Eq. (107) is: 
 σ෥∗ = C ε෤∗ = C R෩∗ ε  ↔  𝜎௜∗ = 𝑐௜௝𝜀௝∗ = 𝑐௜௝𝑟௝௝∗ ൫𝜀௝൯𝜀௝    (108) 
 
where R෩∗ is a 6x6 diagonal matrix, while σ෥∗ and ε෤∗ are 6-dimensional vectors and 𝑟௝∗ = 𝑟௝௝∗ , as Eq. (109) 
shows: 
 

σ෥∗ =
⎣⎢⎢
⎢⎢⎢
⎡𝜎෤ଵ∗𝜎෤ଶ∗𝜎෤ଷ∗𝜎෤ସ∗𝜎෤ହ∗𝜎෤଺∗⎦⎥⎥

⎥⎥⎥
⎤ =

⎣⎢⎢
⎢⎢⎢
⎡𝜎෤ଵଵ∗𝜎෤ଶଶ∗𝜎෤ଷଷ∗𝜎෤ଵଶ∗𝜎෤ଶଷ∗𝜎෤ଵଷ∗ ⎦⎥⎥

⎥⎥⎥
⎤ = C ε෤∗ = C

⎣⎢⎢
⎢⎢⎢
⎡𝜀ଵ̃ଵ∗𝜀ଶ̃ଶ∗𝜀ଷ̃ଷ∗𝜀ଵ̃ଶ∗𝜀ଶ̃ଷ∗𝜀ଵ̃ଷ∗ ⎦⎥⎥

⎥⎥⎥
⎤ = C

⎣⎢⎢
⎢⎢⎢
⎡𝜀ଵ̃∗𝜀ଶ̃∗𝜀ଷ̃∗𝜀ସ̃∗𝜀ହ̃∗𝜀଺̃∗⎦⎥⎥

⎥⎥⎥
⎤ = C

⎣⎢⎢
⎢⎢⎢
⎡𝑟ଵ∗𝜀ଵ𝑟ଶ∗𝜀ଶ𝑟ଷ∗𝜀ଷ𝑟ସ∗𝜀ସ𝑟ହ∗𝜀ହ𝑟଺∗𝜀଺⎦⎥⎥

⎥⎥⎥
⎤ = C

⎣⎢⎢
⎢⎢⎢
⎡𝑟ଵ∗ 0 0 0 0 00 𝑟ଶ∗ 0 0 0 00 0 𝑟ଷ∗ 0 0 00 0 0 𝑟ସ∗ 0 00 0 0 0 𝑟ହ∗ 00 0 0 0 0 𝑟଺∗⎦⎥⎥

⎥⎥⎥
⎤

⎣⎢⎢
⎢⎢⎡
𝜀ଵ𝜀ଶ𝜀ଷ𝜀ସ𝜀ହ𝜀଺⎦⎥⎥

⎥⎥⎤ = C R෩∗ε  
(109) 

 
3.2.2 Expectation and variance tensors 

 
Expectation 
The expected value of the stress tensor 𝐒෨∗ can be calculated from Eq. (107): 
 𝐒∗ = 𝔼ൣ𝐒෨∗൧ = 𝐂: 𝔼ൣ𝐃෩ ∗൧ = 𝐂: 𝔼ൣ𝐑෩∗൧: 𝐃 = 𝐂: 𝐑∗: 𝐃 ↔  𝔼[𝜎௞௟∗ ] = 𝑐௜௝௞௟𝔼[𝜀௞௟∗ ] = 𝑐௜௝௞ሖ ௟ሖ𝑅௞ሖ ௟ሖ∗ 𝜀௞௟      (110) 
 
where R* and R* are the expected DMR tensor and matrix, respectively: 
 𝐑∗ = 𝔼ൣ𝐑෩∗൧,         R∗ = ൣ𝑅௞ሖ ௟ሖ∗ ൧௞,ሖ ௟ሖୀଵଷ = ቂ𝔼ൣ𝑟௞ሖ ௟ሖ∗ (𝜀௞ሖ ௟ሖ)൧ቃ௞,ሖ ௟ሖୀଵଷ

     (111) 

 
The matrix form of Eq. (112) is similar to Eq. (109): 
 

σ∗ =
⎣⎢⎢
⎢⎢⎢
⎡𝜎ଵ∗𝜎ଶ∗𝜎ଷ∗𝜎ସ∗𝜎ହ∗𝜎଺∗⎦⎥⎥

⎥⎥⎥
⎤ =

⎣⎢⎢
⎢⎢⎢
⎡𝜎ଵଵ∗𝜎ଶଶ∗𝜎ଷଷ∗𝜎ଵଶ∗𝜎ଶଷ∗𝜎ଵଷ∗ ⎦⎥⎥

⎥⎥⎥
⎤ = C ε∗ = C

⎣⎢⎢
⎢⎢⎢
⎡𝜀ଵଵ∗𝜀ଶଶ∗𝜀ଷଷ∗𝜀ଵଶ∗𝜀ଶଷ∗𝜀ଵଷ∗ ⎦⎥⎥

⎥⎥⎥
⎤ = C

⎣⎢⎢
⎢⎢⎢
⎡𝜀ଵ∗𝜀ଶ∗𝜀ଷ∗𝜀ସ∗𝜀ହ∗𝜀଺∗⎦⎥⎥

⎥⎥⎥
⎤ = C

⎣⎢⎢
⎢⎢⎢
⎡𝑅ଵ∗𝜀ଵ𝑅ଶ∗𝜀ଶ𝑅ଷ∗𝜀ଷ𝑅ସ∗𝜀ସ𝑅ହ∗𝜀ହ𝑅଺∗𝜀଺⎦⎥⎥

⎥⎥⎥
⎤ = C

⎣⎢⎢
⎢⎢⎢
⎡𝑅ଵ∗ 0 0 0 0 00 𝑅ଶ∗ 0 0 0 00 0 𝑅ଷ∗ 0 0 00 0 0 𝑅ସ∗ 0 00 0 0 0 𝑅ହ∗ 00 0 0 0 0 𝑅଺∗⎦⎥⎥

⎥⎥⎥
⎤

⎣⎢⎢
⎢⎢⎡
𝜀ଵ𝜀ଶ𝜀ଷ𝜀ସ𝜀ହ𝜀଺⎦⎥⎥

⎥⎥⎤ = C R∗ε   
 (112) 
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It should be noted that matrix C is symmetric1-3, but, in general, matrix CR* is not. As for the reliability 
functions 𝑅௜∗ (i=1,…,6), they can be estimated from mechanical tests applying suitable strain loads. The 
determinant of matrix R* can be defined as a kind of global reliability for the material: 
 0 ≤ 𝑅ீ௟௢௕∗ (𝑡) =  𝑑𝑒𝑡R∗ = ∏ 𝑅௜∗(𝜀௜(𝑡))଺௜ୀଵ ≤ minଵஸ௜ஸ଺ 𝑅௜∗(𝜀௜(𝑡)) ≤ 1     (113) 
 
Global reliability is less than the minimum of the component reliability functions 𝑅௜∗ (i=1,…,6) or equal 
if the others are 1 therefore it can be used as an exact damage limit for the material. For example, the 
material can be considered damaged or failed at a strain load level in time interval [0,t] if global 
reliability is not greater than a given critical value, Rcrit. 
Variance 
The stress tensor can be centralized with its expected value: 
 𝐒෨∗ − 𝐒∗ = 𝐂: 𝐑෩∗: 𝐃 − 𝐂: 𝔼ൣ𝐑෩∗൧: 𝐃 = 𝐂: ൫𝐑෩∗ − 𝐑∗൯: 𝐃    (114) 
 
the elements of which are: 
 𝜎௞௟∗ − 𝔼[𝜎௞௟∗ ] = 𝑐௜௝௞௟(𝜀௞௟∗ − 𝔼[𝜀௞௟∗ ]) = 𝑐௜௝௞ሖ ௟ሖ൫𝑟௞ሖ ௟ሖ∗ − 𝔼ൣ𝑟௞ሖ ௟ሖ∗ ൧൯𝜀௞௟ = 𝑐௜௝௞ሖ ௟ሖ൫𝑟௞ሖ ௟ሖ∗ − 𝑅௞ሖ ௟ሖ∗ ൯𝜀௞௟    (115) 
 
Otherwise, the matrix form of the centralized stress tensor is: 
 σ෥∗ − σ∗ = C൫R෩∗ − R∗൯ε      (116) 
 
The variance of the 2nd order stress tensor is represented by the 4th order covariance tensor, which is 
the expectation of the tensorial product4, 5 of the centralized stress tensors42: 
 𝐃ఙ∗ଶ = 𝔻ଶ൫𝐒෨∗൯ = 𝔼ൣ൫𝐒෨∗ − 𝐒∗൯⨂൫𝐒෨∗ − 𝐒∗൯൧ = 𝔼ൣ𝐒෨∗⨂𝐒෨∗ − 𝐒∗⨂𝐒෨∗ − 𝐒෨∗⨂𝐒∗ + 𝐒∗⨂𝐒∗൧ = = 𝔼ൣ𝐒෨∗⨂𝐒෨∗൧ − 𝐒∗⨂𝐒∗    (117) 
 
where 𝔻ଶ is the variance operator and the symbol ‘’ denotes the tensorial product. 
Applying Eqs. (111) and (114) to rewriting Eq. (117) yields: 
 𝐃ఙ∗ଶ = 𝔼ൣ൫𝐂: ൫𝐑෩∗ − 𝐑∗൯: 𝐃൯⨂൫𝐂: ൫𝐑෩∗ − 𝐑∗൯: 𝐃൯൧ = 𝔼ൣ൫𝐂: 𝐑෩∗: 𝐃൯⨂൫𝐂: 𝐑෩∗: 𝐃൯൧ −(𝐂: 𝐑∗: 𝐃)⨂(𝐂: 𝐑∗: 𝐃)    (118) 
 
Rewriting Eqs. (117) and (118) provides the variance of the stress vector, that is, its covariance matrix: 
 Dఙ∗ଶ = 𝔻ଶ൫σ෥∗൯ = 𝔼 ቂ൫σ෥∗ − σ∗൯൫σ෥∗ − σ∗൯்ቃ = 𝔼ൣσ෥∗σ෥∗்൧ − σ∗σ∗்   (119) 

 
or its detailed form: 
 Dఙ∗ଶ = 𝔼 ቂ൫C൫R෩∗ − R∗൯ε൯൫C൫R෩∗ − R∗൯ε൯்ቃ = 𝔼 ቂC൫R෩∗ − R∗൯ε ε்൫R෩∗ − R∗൯்C்ቃ = = C 𝔼 ቂ൫R෩∗ − R∗൯ε ε்൫R෩∗ − R∗൯்ቃ C் = C 𝔼ൣR෩∗ε 𝜀்R෩∗்൧C் − C R∗ε ε்R∗்C்  (120) 

 
Taking into account that matrix C and dyad ε ε் are symmetric matrices and matrix R෩∗ − R∗ is diagonal, 
the elements of which are independent stochastic variables with zero expected values, therefore the 
expected matrix in Eq. (120) is diagonal as well: 
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𝔼 ൬൫R෩∗ − R∗൯ε ε்൫R෩∗ − R∗൯்൰ = ቂ𝔼 ቀ(𝑟௜∗ − 𝑅௜∗)൫𝑟௝∗ − 𝑅௝∗൯ቁ 𝜀௜𝜀௝ቃ = ൣ𝜆௜௝∗ଶ൧ = Λ∗ଶ  (121) 

 
where the elements of matrix Λ∗ଶ defined by Eq. (121) are 
 𝜆௜௝∗ଶ = ቊ 𝔼[(𝑟௜∗ − 𝑅௜∗)ଶ]𝜀௜ଶ = 𝔻ଶ(𝑟௜∗)𝜀௜ଶ, 𝑖 = 𝑗𝔼[(𝑟௜∗ − 𝑅௜∗)]𝐸ൣ𝑟௝∗ − 𝑅௝∗൧𝜀௜𝜀௝ = 0, 𝑖 ≠ 𝑗            (122) 

 
Consequently, the diagonal matrix Λ∗ଶ can be regarded as the product of two matrices. In the main 
diagonal of one of the matrices, variances 𝔻ଶ(𝑟௜∗) can be found while the other matrix contains 
squared deformations 𝜀௜ଶ. Correspondingly, the simpler shape of Eq. (120) is this (CT=C): 
 Dఙ∗ଶ = C Λ∗ଶC = C Dோ∗ଶ𝑑𝑖𝑎𝑔൫ε ε்൯C = C Dோ∗ଶΛଶC    (123) 
 
where Λଶ = 𝑑𝑖𝑎𝑔൫ε ε்൯ is the diagonal part of the dyad ε ε் [4, 5, 42] and 
 

Λ∗ଶ = Dఙ∗ଶ𝑑𝑖𝑎𝑔൫ε ε்൯ =
⎣⎢⎢
⎢⎢⎢
⎡𝔻ଶ(𝑟ଵ∗) 0 0 0 0 00 𝔻ଶ(𝑟ଶ∗) 0 0 0 00 0 𝔻ଶ(𝑟ଷ∗) 0 0 00 0 0 𝔻ଶ(𝑟ସ∗) 0 00 0 0 0 𝔻ଶ(𝑟ହ∗) 00 0 0 0 0 𝔻ଶ(𝑟଺∗)⎦⎥⎥

⎥⎥⎥
⎤

⎣⎢⎢
⎢⎢⎢
⎡𝜀ଵଶ 0 0 0 0 00 𝜀ଶଶ 0 0 0 00 0 𝜀ଷଶ 0 0 00 0 0 𝜀ସଶ 0 00 0 0 0 𝜀ହଶ 00 0 0 0 0 𝜀଺ଶ⎦⎥⎥

⎥⎥⎥
⎤

= Dఙ∗ଶΛଶ         (124) 

 
Otherwise, the standard deviation matrix Dఙ∗  and the diagonal deformation matrix Λ are as follows: 
 

Dఙ∗ =
⎣⎢⎢
⎢⎢⎢
⎡𝔻(𝑟ଵ∗) 0 0 0 0 00 𝔻(𝑟ଶ∗) 0 0 0 00 0 𝔻(𝑟ଷ∗) 0 0 00 0 0 𝔻(𝑟ସ∗) 0 00 0 0 0 𝔻(𝑟ହ∗) 00 0 0 0 0 𝔻(𝑟଺∗)⎦⎥⎥

⎥⎥⎥
⎤ ,       Λ =

⎣⎢⎢
⎢⎢⎢
⎡|𝜀ଵ| 0 0 0 0 00 |𝜀ଶ| 0 0 0 00 0 |𝜀ଷ| 0 0 00 0 0 |𝜀ସ| 0 00 0 0 0 |𝜀ହ| 00 0 0 0 0 |𝜀଺|⎦⎥⎥

⎥⎥⎥
⎤          (125) 

 
Using the latter matrices, Eq. (123) can be rewritten: 
 Dఙ∗ଶ = CΛ∗ଶC = C Λ Dோ∗ଶΛ C = C Λ Dோ∗ (C Λ Dோ∗ )்    (126) 
 
Based on Eqs. (123) and (126), it can be stated that the matrix C Λ Dோ∗  is symmetric, then 
 Dఙ∗ = (C Λ∗ଶC)ଵ/ଶ = C Λ Dோ∗       (127) 
 
or if the matrix C Λ is orthogonal then the elements of Dఙ∗ଶ are the eigen-functions42 of Dఙ∗ଶ.  
Otherwise, using Eq. (A5) in Appendix A2, matrices Dோ∗ଶ and Dோ∗  can be expressed with the elements of 
matrix R*: 
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Dோ∗ଶ = ଵே ⎣⎢⎢
⎢⎢⎢
⎡𝑅ଵ∗(1 − 𝑅ଵ∗) 0 0 0 0 00 𝑅ଶ∗(1 − 𝑅ଶ∗) 0 0 0 00 0 𝑅ଷ∗(1 − 𝑅ଷ∗) 0 0 00 0 0 𝑅ସ∗(1 − 𝑅ସ∗) 0 00 0 0 0 𝑅ହ∗(1 − 𝑅ହ∗) 00 0 0 0 0 𝑅଺∗(1 − 𝑅଺∗)⎦⎥⎥

⎥⎥⎥
⎤,    Dோ∗ = ଵ√ே

⎣⎢⎢
⎢⎢⎢
⎢⎡ඥ𝑅ଵ∗(1 − 𝑅ଵ∗) 0 0 0 0 00 ඥ𝑅ଶ∗(1 − 𝑅ଶ∗) 0 0 0 00 0 ඥ𝑅ଷ∗(1 − 𝑅ଷ∗) 0 0 00 0 0 ඥ𝑅ସ∗(1 − 𝑅ସ∗) 0 00 0 0 0 ඥ𝑅ହ∗(1 − 𝑅ହ∗) 00 0 0 0 0 ඥ𝑅଺∗(1 − 𝑅଺∗)⎦⎥⎥

⎥⎥⎥
⎥⎤   (128) 

 
3.2.3 Confidence range of the stress process 

 
If the covariance matrix is known, the confidence range (𝒮) for the mean stress vector (σഥ∗) can be 
constructed at a given probability level (p). It depends on the controlled strain load vector (𝜀)41, 42: 
 ℙ ቀσഥ∗ ∈ 𝒮൫ε൯ቁ = 𝑝      (129) 

where  

σഥ∗ = ଵெ ∑ σ௠∗ெ௠ୀଵ = ଵெ ∑
⎣⎢⎢
⎢⎢⎢
⎡𝜎ଵ,௠∗𝜎ଶ,௠∗𝜎ଷ,௠∗𝜎ସ,௠∗𝜎ହ,௠∗𝜎଺,௠∗ ⎦⎥⎥

⎥⎥⎥
⎤

ெ௠ୀଵ =
⎣⎢⎢
⎢⎢⎢
⎡𝜎തଵ∗𝜎തଶ∗𝜎തଷ∗𝜎തସ∗𝜎തହ∗𝜎ത଺∗⎦⎥⎥

⎥⎥⎥
⎤
     (130) 

 
and M is the number of the measurements or observations. 
The fact that the covariance matrix Dோ∗ଶ given by Eq. (128) is diagonal means that the components of 
the stress vector are at least uncorrelated. Supposing that they are also independent, for example they 
can be considered of normal distribution, construction may be performed component by component: 
 ℙ ቀσഥ∗ ∈ 𝒮൫ε൯ቁ = ∏ ℙ ቀ𝜎ത௞∗ ∈ 𝒮௞൫ε൯ቁ଺௞ୀଵ = ∏ 𝑝௞଺௞ୀଵ = 𝑝   (131) 

 
where 𝒮௞൫ε൯ is the confidence interval42 for the stress component 𝜎ത௞∗ (k=1,…,6) at probability level pk: 
 𝒮௞൫ε൯ = ൬𝔼(𝜎௞∗) − ௭ಾ,೛ೖ√ெ 𝔻(𝜎௞∗), 𝔼(𝜎௞∗) + ௭ಾ,೛ೖ√ெ 𝔻(𝜎௞∗)൰    (132) 

 
Here, 𝑧ெ,௣ೖ  is the critical value, and the probability pk relates to the mean stress component 𝜎ത௞∗: 
 𝑝௞ = ℙ ቀ𝜎ത௞∗ ∈ 𝒮௞൫ε൯ቁ      (133) 

 
The standard deviation of components 𝜎௞∗ can be obtained from matrix Dோ∗  in Eq. (128): 
 𝔻(𝜎௞∗) = ටோೖ∗ ൫ଵିோೖ∗ ൯√ே       (134) 

 
In addition, the confidence range 𝒮൫ε൯ is the direct product of the confidence intervals 𝒮௞൫ε൯: 
 𝒮൫ε൯ = 𝒮ଵ൫ε൯ × 𝒮ଶ൫ε൯ × … × 𝒮଺൫ε൯     (135) 
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It is a reasonable choice if each pk is considered the same, that is, (k=1,…,6): 
 𝑝௞ = 𝑝ଵ/଺         (136) 
 
 

4 SUMMARY AND CONCLUSIONS 
 
4.1 Summary 
Modelling strain, stress and destruction of simple E-bundles as stochastic process is the basis of the 
description of the behavior composite materials. 
The reliability and failure tests show that fibers damaged during stress do not take part in further load 
bearing. It is especially critical under compressive and tensile stress since damage during stress in one 
direction affects behavior in the other direction.  
We introduced the minimum-preserving memory window functions (MWFs) defined for variate fiber 
parameters. The defined empirical and expected reliability functions characterize the stochastic 
destruction process of fibers. These functions remember the past and retain the effect of damage and 
failures on the stress–strain relationships when the controlled normal or shear strain load is pulsating 
or may decrease.  
We showed that the damaging effect of the controlled alternating strain load could be taken into 
account with its minimum and maximum envelopes.  
We proved that the duplex MWFs and the expected duplex memory reliability functions (MRFs) can 
be obtained as the product of those related to the compression and the tensile functions for normal 
strain load and the product of those related to the negative and positive shear functions for shear 
strain load.  
Based on the properties of the MRFs and their product formula and corresponding to the conditions 
formulated at the very beginning of Chapter 3, we derived a stochastic material Hooke law for 
anisotropic linear elastic mechanical behavior with the multidimensional strain excited damage stress 
tensor. The model takes into account the effects of the damage and failure processes when a 
controlled strain load is used.  
At a given probability level, a strain-dependent confidence interval can be defined for the stress 
components with our model. 
 
4.2 Conclusions and remarks 
-Modeling failure effects with FBC-based material law provides a special stress–strain relationship that 
is positive for all the finite deformations, hence there is no ultimate breakage or fracture. 
Consequently, for example, implicit FE simulations do not need re-meshing, just the use the FBC-based 
formulas. 
-All that can be further developed and extended for  

controlled stress load, 
when elasticity constants E, G, ) are not constant but stochastic variables – for both controlled 

strain and stress load, 
large deformations – nonlinearity in the fiber deformations – using nonlinear E-bundles, 
linear viscoelastic behavior – using viscoelastic E-bundles.  

Based on the results, a stochastic Composite Laminate Theory CLT) can be developed that we will 
want to present in the second part of this paper. 
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APPENDIX 
 
A1 Theorem of the minimum-preserving functions 
 
A1.1 Monotone decreasing function 
Let g(x), (0x<), be a monotone decreasing real function, and 0u(t), (0t<), a continuous arbitrary 
non-negative real function. Consider the maximum, uM, of u(t’) in the interval 0t’t< as follows: 
 0 ≤ 𝑢(𝑡) ≤ 𝑢ெ(𝑡) = max଴ஸ௧ᇲஸ௧ 𝑢(𝑡ᇱ)      (A1) 
 
It is obvious that uM(t) (0t) is a monotone increasing function. 
Statement: 𝑔൫𝑢ெ(𝑡)൯ = 𝑔 ቀ max଴ஸ௧ᇲஸ௧ 𝑢(𝑡ᇱ)ቁ = min଴ஸ௧ᇲஸ௧ 𝑔൫𝑢(𝑡ᇱ)൯    (A2) 

 
Proof: If 0t’<t, the next inequalities stand: 
 𝑢ெ(𝑡′) ≤ 𝑢ெ(𝑡) ⟹ 𝑔൫𝑢ெ(𝑡′)൯ ≥ 𝑔൫𝑢ெ(𝑡)൯ 
 
because uM(t) is monotone increasing and g(x) is monotone decreasing. The left-hand inequality above 
stands for every t’[0,t], consequently g(uM(t)) equals the minimum of g(u(t’)), t’[0,t].  
 
A1.2 Monotone increasing function 
A similar statement is true when h(x) is a monotone increasing function, and u(t)0, (0t<), is a 
continuous arbitrary non-positive real function. Consider the minimum, um, of u(t’) in the interval 
0t’t< as follows: 
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𝑢௠(𝑡) = min଴ஸ௧ᇲஸ௧ 𝑢(𝑡ᇱ) ≤ 𝑢(𝑡) ≤ 0      (A3) 
 
It is obvious that um(t) (0t) is a monotone decreasing function. 
Statement: ℎ൫𝑢௠(𝑡)൯ = ℎ ቀ min଴ஸ௧ᇲஸ௧ 𝑢(𝑡ᇱ)ቁ = min଴ஸ௧ᇲஸ௧ ℎ൫𝑢(𝑡ᇱ)൯     (A4) 

 
Proof: If 0t’<t then the next inequalities stand: 
 𝑢௠(𝑡′) ≥ 𝑢௠(𝑡) ⟹ ℎ൫𝑢௠(𝑡′)൯ ≥ ℎ൫𝑢௠(𝑡)൯ 
 
since um(t) is monotone decreasing and h(x) is monotone increasing. The inequality on the left-hand 
side above stands for every t’[0,t], consequently h(um(t)) equals the minimum of h(u(t’)), t’[0,t].  
 
A2 Variance of the empirical reliability function 
 
Statement 
The variance of the empirical duplex normal reliability function, rCT(u) is given by: 
 𝔻ଶ൫𝑟஼்(𝑢)൯ = ଵே 𝑅஼்(𝑢)[1 − 𝑅஼்(𝑢)]     (A5) 
Proof 
Consider the empirical normal reliability function, rCT, given by Eq. (51) and rewrite it using Eq. (23): 
 𝑟஼்(𝑢) = 1𝑁 ෍ 𝜒஼்,௡(𝑢)ே௡ୀଵ = 1𝑁 ෍ 𝜒஼,௡(𝑢)𝜒்,௡(𝑢)ே௡ୀଵ  

 
Considering that C and T are independent stochastic processes, the expectation of rCT can be obtained 
as 𝔼൫𝑟஼்(𝑢)൯ = ଵே ∑ 𝔼 ቀ𝜒஼,௡(𝑢)𝜒்,௡(𝑢)ቁே௡ୀଵ = 𝔼 ቀ𝜒஼,௡(𝑢)ቁ 𝔼 ቀ𝜒்,௡(𝑢)ቁ = 𝑅஼(𝑢) 𝑅்(𝑢)        (A6) 
 
Hence, determining the variance of rCT  
 𝔻ଶ൫𝑟஼்(𝑢)൯ = 𝔼 ቀ𝑟஼ଶ் (𝑢)ቁ − 𝔼ଶ൫𝑟஼்(𝑢)൯          (A7) 
 
needs only the calculation of the mean squared value, which is 
 𝔼 ቀ𝑟஼ଶ் (𝑢)ቁ = 𝔼 ቀ ଵேమ ∑ 𝜒஼்,௜𝜒஼்,௝௜,௝ ቁ = 𝔼 ቀ ଵேమ ∑ 𝜒஼்,௜𝜒஼்,௝௜ୀ௝ + ଵேమ ∑ 𝜒஼்,௜𝜒஼்,௝௜ஷ௝ ቁ = ேேమ 𝔼൫𝜒஼்,௜ଶ ൯ +ேమିேேమ 𝔼൫𝜒஼்,௜൯𝔼൫𝜒஼்,௝൯ = ଵே 𝔼൫𝜒஼்,௜൯ + ேିଵே 𝔼ଶ൫𝜒஼்,௜൯ = ଵே 𝑅஼(𝑢) 𝑅்(𝑢) + ቀ1 − ଵேቁ 𝑅஼ଶ(𝑢) 𝑅ଶ்(𝑢) (A8) 
 
Substituting Eq. (A8) into Eq. (A7) and using Eq. (A6) provide the statement: 
 𝔻ଶ൫𝑟஼்(𝑢)൯ = 1𝑁 𝑅஼(𝑢)𝑅்(𝑢) + ൬1 − 1𝑁൰ 𝑅஼ଶ(𝑢)𝑅ଶ்(𝑢) − 𝑅஼ଶ(𝑢)𝑅ଶ்(𝑢) = = ଵே 𝑅஼(𝑢)𝑅்(𝑢)[1 − 𝑅஼(𝑢)𝑅்(𝑢)] = ଵே 𝑅஼்(𝑢)[1 − 𝑅஼்(𝑢)]          


