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A B S T R A C T

Searching for the optimal injection molding settings for a new product usually requires much time and money.
This article proposes a new method that uses reinforcement learning with prior knowledge for the optimization
of settings. This method uses an actor-critic algorithm for the optimization of the filling phase and the holding
phase. For five different injection molded products, the filling phase and holding phase were adjusted with the
above-mentioned method. The learning algorithm optimized the settings for one product (pre-learning) and used
this acquired knowledge (prior knowledge) to optimize the injection molding settings for a new product (post-
learning). This research shows that the method is able to optimize the injection molding parameters in a
reasonable time when prior knowledge is derived from a product with a different material, gate design or even
geometry. On average, less than 16 injection molding cycles were needed for the algorithm to optimize the filling
phase and less than 10 cycles to optimize the holding phase. The presented method can greatly facilitate the
development of self-adjusting injection molding machines.

1. Introduction

Injection molding is a very popular polymer processing technique
and is used to manufacture a large proportion of plastic products [1].
There is a complex relationship between the technological parameters,
which should be investigated before mass production [2]. If the tech-
nological parameters are set incorrectly, it may lead to a number of
defects during production, such as warpage, flow marks, short shot, and
sink marks [3]. Besides, the control of different injection molding ma-
chines can differ, so the required machine settings can differ as well [4].
Also, there are several types of polymers with different thermal prop-
erties, requiring different process parameters [5]. Furthermore, the
quality of the product may change if injection molding settings are
changed [6]. The design and material of the mold can also have a sig-
nificant influence on the injection molding process [7]. For example, the
design of the gate can have a great effect on process optimization [8].
Finding the proper machine settings is therefore not easy. If the cavity is
filled too fast, it can produce flash on the product; in contrast, filling the
cavity too slowly can cause a short shot [9]. However, all these potential
problems exist because injection molding can use a wide range of ma-
terials and technological parameters. Different materials have different

mechanical and thermal properties due to their different molecular
structure [10]. Of course, if someone wants to exploit the true potential
of polymers, the properties of the selected polymer must be taken into
account when a new mold is designed for a new product [11].

In order to model a complex and multi-parameter process such as
injection molding, methods to analyze the effects of the parameters and
their interactions are needed. One option is to use traditional mathe-
matical techniques. Mukras et al. [12] used a central composite design
for seven injection molding parameters to optimize the shrinkage and
warpage of the products. Roy and Li [13] created an information model
based, among other things, on the properties of the polymer to reduce
waste during injection molding. Chen et al. [14] showed how to use
sequential design to optimize injection molding. Barghash and Alka-
abneh [15] created regression models that describe the relationship
between the selected quality parameters and injection molding settings.

Another possibility is to investigate the effect of injection molding
parameters on simulated results rather than actual results. With today’s
computing power, several finite element–based software packages are
available to simulate injection molding [16]. Simulations can be useful
when it needs to be analysed or shown how the mold is filled with the
material during injection molding [17]. With injection molding
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simulations, experimental designs can be planned, such as the Taguchi
analysis [18]. Furthermore, injection molding simulations can be useful
for mold materials with non-linear elastic behavior [19]. Of course,
different software packages may use different boundary conditions, so
the results may differ [20]. It is important to note that simulation results
can differ significantly from actual injection molding results. Still, the
effect of process parameters from simulations can be transferred to in-
jection molding [21].

In contrast to traditional methods, machine learning–based solutions
have recently become popular [22]. Gim and Rhee [23] used a neural
network to model the relationship between in-mold pressure and part
weight. Gao et al. [24] showed the versatility of machine learning
methods for conformal cooling channels in injection molds. They used
machine learning to design cooling systems for more uniform product
temperature during injection molding. In addition, numerous studies
have used machine learning to predict product quality [25–27].

In the early 2010s, the concept of Industry 4.0 emerged, with no
precise definition, but the term refers to the 4th industrial revolution
and includes manufacturing based on communication and interaction
between machines and sensor-based manufacturing processes, among
others [28]. Industry 4.0 is also a commonly used concept in injection
molding. Khosravani et al. [29] interpreted the concept as a combina-
tion of injection molding, 3D printing, virtual reality, and generative
design. The intelligent system they described was able to speed up
production and reduce production cost. Rousopoulou et al. [30] created
a control system that uses cognitive analytics and machine learning for
the detection of anomalies and can retrain itself if needed. Farahani et al.
[31] consider Industry 4.0 the processing and analysis of sensor data.
They focused on detecting different malfunctions during injection
molding by using features extracted from sensor data.

According to Benešová and Tupa [32], the 4th industrial revolution
will change job opportunities in the industrial environment, as it
happened in the former revolutions. Combemale et al. [33] think that
machines will do jobs that require low and medium levels of skill in the
future. With regard to injection molding, a control system capable of
setting up the machine may be necessary due to the possible changes in
jobs.

Reinforcement learning algorithms are a subset of machine learning
methods that interact with the environment to learn how to perform
specific tasks [34,35]. Therefore, these algorithms could be appropriate
control systems under the Industry 4.0 principle. There are already a few
examples in the literature on how reinforcement learning can be used for
injection molding: for process optimization [36], for production
scheduling [37], and for regulation in the case of non-optimal products
[38]. One may ask, of course, what is the difference between rein-
forcement learning–based control systems and conventional control
systems. According to Ugurlu et al. [39], a reinforcement learning–based
system can control itself better in a new environment, but traditional
control systems are more stable. For example, PID regulators can be used
effectively in simple, linear changing environments, but these control-
lers are not recommended for sudden changes in the environment [40].
In contrast, one of the greatest disadvantages of reinforcement lear-
ning–based regulators is the need for a lot of training samples and time
[41].

For a brand-new product, setting up the injection molding machine is
often based on the experience of the technician and trial and error.
However, these types of tasks are likely to performed by machines over
time as a result of the Industry 4.0 ideology. This study, therefore, ex-
plores a novel method, which can be used to set up the injection molding
machine for a new product at different phases of the injection molding
cycle. This method is based on reinforcement learning; more precisely, it
is actor-critic algorithm–based, and the main idea is to use prior
knowledge that the algorithm learns from a previous product and use it
for a new one. This study shows how to use the proposed method to
optimize the filling and the holding phase with products injection
molded from different materials, with different types of gates, part

thicknesses, part geometries, and sizes.

2. Materials and methods

2.1. Injection molding and tests

For the experiments, several injection molds (see Fig. 1) and injec-
tion molding machines were used: an Arburg Allrounder Advance 270 S
400–170, an Arburg Allrounder 320C 400–170, an Arburg Allrounder
420C 1000–290, and an Arburg Allrounder 470 A 1000-290 machine
(from Arburg GmbH + Co., Loβburg, Germany). Terluran GP-35 acry-
lonitrile butadiene styrene (ABS) and Ingeo Biopolymer 3100 HP poly-
lactic acid (PLA) were used for the injection molding tests. All parts were
made from ABS, but the lid parts (Fig. 1 b) and plates with a fan gate
(Fig. 1 e) were made from PLA, too. Two series of experiments were
performed; filling phase optimization with the first series, where plate-
like products and the lid product were used (Fig. 1 b). With the second
series of experiments, the holding phase was investigated—the small lid,
the lid, and the 1 mm thick plate were used for these tests (Fig. 1 a, b, d).

2.1.1. Injection molded parts for the examination of the filling phase
To investigate the use of prior knowledge from different products,

injection molded parts with three different gate designs and with three
different thicknesses but the same base geometry (80 mm × 80 mm)
were used. Plates were made (with a fan gate) from PLA to investigate
the effect of the different material (PLA instead of ABS), and the effect of
a completely different geometry on the performance of the method was
investigated on injection molded lid products. The aim of the research
was to teach the learning algorithm how to use the selected injection
molding settings to make filled products and use the acquired knowl-
edge for another product. The 1 mm and 2.5 mm thick plates had a film
gate, and other 1.2 mm thick plate products with fan and double-edge
gates were used during the tests. In the filling experiments, in-mold
pressure was measured with two different types of in-mold pressure
measurement systems: the Kistler CoMo system (Kistler Group, Winter-
thur, Switzerland) and Cavity Eye in-mold sensors (Cavity Eye Ltd.,
Kecskemét, Hungary). For each setting combination, a photo of the
product was taken with a Microsoft LifeCam Cinema webcam (Microsoft
Corporation, Redmond, Washington, USA) after mold opening. Two
injection molding parameters were changed for the investigation of
filling: injection rate and switch-over volume. With these settings, short
shots (partially filled products), overfilled products (too high in-mold
pressure) and properly filled products were made. The switch-over
volumes were the following: 22, 20, 18, 16, 14, 12, 10, 9, 8.5, 8, 7.5,
7, 6.5 and 6 cm3. Four different injection rate settings were used with
each switch-over setting (15, 30, 45 and 60 cm3/s). The injection
molding settings can be seen in Table 1. Five samples were made with
each setting combination of the 1.2 mm thick plate and three samples
with the 1 mm thick plate. From resampling, it was clear that there was
no significant difference between the standard deviation of each setting
combination. Therefore, no more 2.5 mm thick plate samples were
molded, except for one setting combination, and used that variance for
each of the other setting combinations. In the case of the lid product and
the plate from PLA, three samples were made for each switch-over
volume with a given injection flow, and used these data to predict ma-
chine noise. The measured and collected data with these settings were
used to simulate the learning of the algorithm.

2.1.2. Injection molded parts for the examination of the holding phase
Products of different sizes, geometries and materials were injection

molded in the investigation of the impact of prior knowledge on the
algorithm in optimizing the holding phase. Three different products
were used: a lid with a complex geometry, a 1 mm thick plate, and a
small lid with a simple geometry, but the mold had 16 cavities
(Fig. 1b–d, and a, respectively). Test specimens of the complex lid ge-
ometry using ABS and PLA were also molded. During the experiments,
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the holding pressure and time were changed, as these settings define the
holding phase, and product weight was measured with an Ohaus Ex-
plorer analytical balance (OHAUS Europe GmbH, Uster, Switzerland).
Holding pressure was changed between 0 bar and 1000 bar, typically

with 100 bar steps. The plate and the small lid products were the
exception to this. In the case of the former, there were flashes on the
products at holding pressures above 800 bar. In the case of the latter, the
weight measurement for a 16-cavity mold is tedious, therefore only four
holding pressures was used: 0 bar, 200 bar, 600 bar, and 1000 bar.
Holding time was changed with steps of 0.5 s between 0 s and 5 s. The
16-cavity small lid parts were again the exception to this because part
weight does not change significantly above a holding time of 3 s. The
plate had a film gate that froze more slowly, therefore the maximum
holding time for this part was 6 s. The other injection molding settings
can be seen in Table 2. With each setting combination, five samples were
produced in the case of the ABS lid product and the small lid product. As
with filling, it was clear that the variance of the data does not change
significantly with different settings. Therefore, in the case of the plate
product, three samples were produced with each holding time setting at
one holding pressure level (400 bar), and the variance in the search
space is estimated from these data. In the case of the lid from PLA, three
samples were produced with each holding time setting with three
holding pressure levels (0 bar, 500 bar, 1000 bar).

2.2. Digital image processing

For the filling phase optimization, the learning algorithm uses the in-

Fig. 1. The model of the injection molded products a) small lid with 16 cavities b) lid product c) plate with a film gate (2.5 mm) d) plate with a film gate (1 mm) e)
plate with a fan gate (1.2 mm) f) plate with a double gate (1.2 mm).

Table 1
The injection molding settings for the filling experiments.

Process
parameter

Plate
1.2
mm
(fan
gate
ABS)

Plate
1.2 mm
(double
gate)

Plate
1.2
mm
(fan
gate
PLA)

Plate 1
mm
(film
gate)

Plate
2.5
mm
(film
gate)

Lid
(ABS)

Injection
molding
machine

270 S 270 S 270 S 420C 420C 320C

Material ABS ABS PLA ABS ABS ABS
Shot volume
[cm3]

30 30 30 30 44 30

Peripheral
speed of
screw [m/
min]

25 25 25 25 25 25

Back pressure
[bar]

60 60 30 30 30 60

Decompression
[cm3]

5 5 5 5 5 5

Injection flow
[cm3/s]

15/
30/
45/60

15/30/
45/60

15/
30/
45/60

15/30/
45/60

15/30/
45/60

15/
30/
45/60

Switch-over
volume [cm3]

6–22 6–22 6–22 6–22 6–22 6–22

Injection
pressure limit
[bar]

1700 1700 1700 1700 1700 1700

Clamping force
[kN]

400 400 400 600 600 400

Holding
pressure [bar]

25 25 25 25 25 25

Holding time
[s]

7.2 7.2 7.2 7.1 7.1 6.1

Holding flow
[cm3/s]

0 0 0 0 0 0

Cooling time [s] 10 10 45 20 20 10
Cycle time [s] 23.5 23.5 58.5 47 47 22.5
Melt
temperature
[◦C]

225 225 200 225 225 220

Mold
temperature
[◦C]

40 40 25 40 40 40

Sensor type Kistler Kistler Kistler Cavity
Eye

Cavity
Eye

Cavity
Eye

Table 2
The injection molding settings for the holding experiments.

Process parameter Lid
(ABS)

Lid
(PLA)

Plate 1 mm
(film gate)

16-cavity
small lid

Injection molding
machine

320C 320C 420C 470 A

Material ABS PLA ABS ABS
Shot volume [cm3] 30 30 30 26
Peripheral speed of
screw [m/min]

25 25 25 25

Back pressure [bar] 60 60 30 40
Decompression [cm3] 5 3 5 5
Injection flow [cm3/s] 30 40 30 50
Switch-over volume
[cm3]

9 9.5 7.5 5.8

Injection pressure limit
[bar]

1500 1500 1700 1500

Clamping force [kN] 400 400 600 700
Holding pressure [bar] 0–1000 0–1000 0–800 0–1000
Holding time [s] 0–5 0–5 0–6 0–3
Holding flow [cm3/s] 40 40 30 25
Cooling time [s] 10 30 20 18
Cycle time [s] 22.5 42 41 30
Melt temperature [◦C] 220 200 225 225
Mold temperature [◦C] 40 25 40 40
Product weight goal [g] 8.930 10.655 7.200 0.4745
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mold pressure and the image of the product. Therefore, the product had
to be detected, from which the algorithm would know how much the
cavity is filled. For this, the Matlab R2023b platform (MathWorks Inc.,
Natick, Massachusetts, USA) was used. The part was recognized by the
image detection algorithm, which had the following preprocessing steps:
transformation to a binary image, sprue recognition, gate detection, and
noise filtering (Fig. 2). The presented image detection algorithm can be
seen in Table 3.

By binarizing the image in one step, many things were filtered out
that are not part of the product, such as mold geometry, fastening screw,
and so on. Of course, some features cannot be deleted this way, such as
the ejector pins or flashback. Only the upper product is needed for the
investigation, so first, the images were divided into upper and lower
parts. The sprue is in the middle of the two products, so finding this
could help detect the selected product. Therefore, the image processing
algorithm searches the binarized image from the top left corner for the
first white pixel in each row (i.e. the left side of the sample). The result is
a function which can be plotted as the number of the vertical pixels
(rows) in the image (Fig. 3). Near the middle of this function is a local
extremum, which shows the location of the sprue.

Once the location of the sprue is known in the picture, only the part
of the image above it is needed, since that is where the selected product
is. This is followed by gate detection. For this, the algorithm had to
consider that the function of the first white pixels along the product does
not change significantly. Therefore, the algorithm calculated the de-
rivative of this function; when the derivative crossed a threshold value,
it indicated the start of the part and the end of the gate (Fig. 4).

When the location of the gate is known, only the parts of the image
above it are important, as these are the parts of the product. In this
selected area, the algorithm checks the connectivity between the white
pixels. Usually, there are many white pixels in the selected region, but
some are not part of the product. These smaller white areas are the
ejectors or reflections of light (Fig. 5 a). The separate small areas have
been filtered out. With the double gate design, the product may consist
of two individual pieces for a relatively large switch-over volume setting
(when little material is injected into the mold). The algorithm handled
this case by treating the two areas at the bottom of the image as identical
(Fig. 5 b).

The remaining white pixels on the image are the product. Therefore,
the number of these white pixels is a good measure of the filling of the
cavity. To prove this, the weight of the products (with one specific in-
jection flow setting for each product geometry) was measured and
compared to the number of pixels detected by the algorithm. These re-
lations (Fig. 6) are strongly positive linear at the significance level of
0.05, but there is a strong saturation of the pixel numbers as the switch-
over volume decreases. This phenomenon is not so visible with the

weight data (except in the case of the lid product) because during in-
jection molding, when the melt fills the cavity, injecting more material
can compress the cushion of material in the mold, and thus, part weight
increases. However, this kind of mass increase during filling is not
desirable, as it causes residual stress in the product, and/or the mold
may open due to the high in-mold pressure, which causes flash on the
product. The fine-tuning of product weight is recommended with the
holding phase optimization because the control of that phase is more
suitable for this.

2.3. In-mold pressure processing

For filling phase optimization, in-mold pressure sensors were used to
detect overfilling and the filling time of the cavity. The injection molds
have several in-mold sensors but the sensor positions are not the same
for each product design, so two sensors for each product were choosen
for the measurements, one closest to the gate and one closest to the
center of the product. This means sensors CH2 and CH4 for the 1.2 mm
thick plates (Fig. 7 a), sensors F1K and F2K for the 1 mm and 2.5 mm
thick plates (Fig. 7 b), and sensors C1SG andC1S2 for the lid product
(Fig. 7 c) were used.

For the detection of overfilling, the maximum pressure of the middle
sensors (CH2, F2K, and C1S2 in Fig. 7) were used. The best choice would
be the end-of-cavity sensors, but in the case of the Kistler sensors, there

Fig. 2. The steps of image processing (from left to right) transformation to binary image, sprue recognition, gate detection, noise filtering.

Table 3
The pseudocode of the image processing algorithm.

Input: Load the image

Input: Define the threshold value for binarization: δbin
Input: Define the threshold value for gate detection: δgate
1: Transform the color image into a grayscale image
2: Transform the greyscale image into a binary image: BI =

{
1 if pixel ≥ δbin
0 if pixel < δbin

3: Loop over each row of the image (x)
4: Find the first white pixel in the given row: f(x)
5: End loop.
6: Find the location (row of the image) of the sprue in the interquartile range

of rows: xsprue = argmax
x∈χsprue

(f(x)) where χsprue = [0.4 • xmax,0.6 • xmax ]

7: Calculate the derivative of the function: fʹ(x) = df(x)/dx where x ∈
[
1,

xsprue
]

8: Find the location (row of the image) of the gate, where fʹ(x) > δgate for the
first time in the range x ∈ [0.8 • xsprue,xsprue[

9: Label the different regions of connected white pixels above the gate
10: Filter out regions with fewer white pixels.
11: Count the number of white pixels: npixel.

Output: npixel
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Fig. 3. a) The function of the first white pixel on the binarized image b) the function on the original rotated image.

Fig. 4. a) The function of the first white pixel on the binarized image and the derivative b) the function and the derivative on the original rotated image.

Fig. 5. a) The differently labeled areas in the binarized image b) The differently labeled areas with two separate parts of the product at the bottom.
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were no end-of-cavity sensors. Therefore, the middle sensors in each
case were measured and investigated. The gate (CH4, F1K, and C1SG)
and middle sensors (CH2, F2K, and C1S2) were used to calculate filling
time (Fig. 8). For both sensors, the time was determined when the
pressure at the sensor reached or exceeded 5 bar for the first time, and

the difference between the time measured at the two sensors is called
filling time (tfill). The definition of the states derived from the image
processing and the evaluation of pressure curves is discussed in detail
later in section 2.4.1.

Fig. 6. The relationship between the weight and the pixel number of the detected product a) plate (1.2 mm) with a fan gate (ABS) b) plate (1.2 mm) with a double
gate c) plate (1 mm) with a film gate d) plate (2.5 mm) with a film gate e) plate (1.2 mm) with a fan gate (PLA) f) lid product (ABS).
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2.4. Learning algorithm

The aim of this study was to show how to use prior knowledge for
injection molding derived from another mold. For this, a learning al-
gorithm was needed to decide what settings to change and how much to
change them. For this purpose, an actor-critic algorithm was made
whose operation can be seen in Table 4. The actions of the algorithm are
the changes in injection molding setting combinations. The changed
injection molding settings for filling optimization are switch-over vol-
ume and injection flow. For the holding phase optimization, the varied
settings are holding pressure and holding time. During the filling opti-
mization, the state was defined based on the size of the detected product
from the image, the measured maximum pressure, and the measured
filling time. These values were used as normalized values compared to
the ideal or target values. For holding phase optimization, the state
means the percent of product weight compared to the target weight. The
algorithm uses state aggregation, i.e., it groups states close to each other
and evaluates them similarly. One can imagine this as if the products of
15 g and 16 g are equally good for the algorithm, but products of 20 g
weight have a different goodness to the algorithm. The goodness of a
state is calculated in the state–value function: v̂(s, w), where xs is an
index vector that shows which aggregated state the algorithm is in, and
w is the weight vector of the aggregated states. The policy function
approximation (π(a|s,θ)) uses this state aggregation too, because it cal-
culates the goodness of each action for a given aggregated state. In the

Fig. 7. The sensor map of the products a) plate (1.2 mm thick) with a fan gate and a double gate (Kistler sensors) b) plate (1 mm and 2.5 mm thick) with a film gate
(Cavity Eye sensors) c) lid (Cavity Eye sensors).

Fig. 8. In-mold pressure and the defined features (maximum pressure,
fill time).
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policy function, xh is an index vector that shows in which state the al-
gorithm chooses which action and θ is the weight vector for each
state–action combination. The initial values for w and θ are 0.5 for each
discrete state and state–action pair. During learning, the algorithm up-
dates the w and θ vectors to estimate the value of each state and state-
–action combination better. With more accurate estimation, the
algorithm can make better and better decisions in each state, and the
output will be closer to the target value.

A restart option was also included in the algorithm. With this option,
it resets itself to the initial injection molding settings after a given
learning steps (tstep) at the specified time (nrestart). Thanks to this option,
it was possible to analyze whether repeating the injection molding set-
tings at the beginning of the learning process helps with learning a new
product. Consequently, when teaching the algorithm, data from real
injection molding experiments was used, and when the algorithm tried
to use settings that fall between measurement points, it used interpo-

lation for teaching. This way, later in practice, through a design of ex-
periments, one can perform the pre-learning of the algorithm (with
offline data) and use the learned policy for post-learning with online
data (in real-time production). This approach (see Fig. 9.) is based on
data processing and machine-to-machine communication, which are the
building blocks of Industry 4.0.

The final goal, of course, will be to connect the algorithm to the in-
jection molding machine so that it can set up the machine in real-time
production. However, this study used pre-measured data (offline data)
because it made the analysis easier and faster. So, the algorithm figures
out how it would change the machine settings, and the output value(s)
associated with the resulting settings are retrieved from the database. In
reality, of course, the injection molding machine cannot produce a
product of exactly the same quality even in two consecutive cycles, as
there may be some variation in the melt, and the control of the machine
can only work with a certain accuracy. Therefore, the algorithm gives a
random noise to the value of the database when it is selected. The
random noise is normally distributed with a mean of zero and with the
variance defined from the measured standard deviation. This way, the
random noise of the injection molding technology was also considered
during the experiments.

For the optimization of the filling phase, the learning algorithm
changes the injection flow and the switch-over volume. The smaller the
switch-over volume, the more melt is injected into the cavity. However,
after a certain switch-over volume, the cavity becomes filled. Then, by
reducing the switch-over volume, the melt is compressed in the cavity,
which increases the in-mold pressure. The injection flow changes the
speed of the melt injected into the cavity. Due to the changes in the melt
flow, the shear stress in the melt changes too, and so does the viscosity,
temperature and specific volume of the melt. Of course, the greater the
flow, the faster the melt fills the cavity. Therefore, the algorithm will
learn how to vary the aforementioned settings for different filling
conditions.

The learning algorithm can change the holding pressure and holding
time for the optimization of the holding phase. With these settings, the
injection molding machine can control how much additional melt is
injected into the cavity after filling. In this injection molding phase, the
melt will shrink due to cooling, so it will not fill the cavity accurately.
The additional melt will change the mass of the product but only slightly
and reduce the effect of shrinkage on the final shape of the product. The

Table 4
The pseudocode of the presented learning algorithm.

Input: Initial weight vectors for function approximation: w ∈ Rn+
∗ , θ ∈ Rn+

∗

Input: Value function: v̂(s,w) = xs • w
Input: Policy function: π(a|s,θ) = exp

(
xh(s,a) • θ

)
/
∑

b∈A

exp
(
xh (s,b) • θ

)

Input: Initial average reward: R = 0, target state sgoal, end of the learning tend
Input: Target value: sgoal ∈ R+

Input: Learning rate: α ∈ R+

Input: Initial state based on initial injection molding settings: sinitial ∈ R+
∗

Input: Random noise on the states: σ ∈ R+
∗

Input: End of the learning: tend ∈ Z+

Input: Whether there is a restart in learning: nrestart , tstep ∈ Z+

1: Initial step definition: t = 1, st = sinitial ∈ R+
∗

2: Repeat until t = tend
3: Check if restart is needed and if so st+1 = sinitial
4: a← Based on policy π
5: Observe st+1 based on a,σ
6: Calculate R from st+1 and sgoal
7: δ←R − R+ v̂(st+1 ,w) − v̂(st ,w) (Temporal difference error)
8: R←R+ α • δ (update average reward)
9: w←w+ α • δ • ∇v̂(st ,w) (update state weight)
10: θ←θ + α • δ • ∇ln π(a|st , θ) (update state-action weight)
11: st←st+1
12: t←t+ 1

Output: w, θ,R R, s for each t

Fig. 9. A reinforcement learning–based method for setting up the injection molding machine for a new product.
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greater the holding pressure, the more melt can be injected into the
cavity. However, holding pressure is only maintained for as long as the
holding time is set. Therefore, increasing holding time will also increase
the amount of melt injected into the cavity additionally. It is important
to note that this phenomenon only persists until the gate (which sepa-
rates the product from the channel) freezes. Therefore, the algorithm
can change the product’s weight with these two parameters to different
degrees.

In a sense, the essence of a learning algorithm is the reward function.
The reward is the feedback for the algorithm from the environment. The
algorithm will learn which decisions are good or bad based on the
reward given for the actions. The reward of the algorithm can be
interpreted as a punishment because the algorithm aims for 100 % (with
a given tolerance), so deviations from this are penalised in all cases.
Therefore, the reward function was described as (1).

R= − |Sactual − 100|, (1)

where R is the reward function and Sactual is the actual state value for
filling (Sfill) or holding (Shold). It is clear form (1) that 100 is the goal
value because the punishment is a negative difference from this. The
negative sign is necessary because of the convergence of learning.

The decisions of the algorithm are stochastically based on the policy
function π(a|s,θ). Therefore, 100 different learning scenarios were made
for each learning case. The performance of the algorithm can be shown
with the actual state of the given step (Fig. 10 a) or the collected reward
(Fig. 10 b). The figures show the median value and the interquartile
range. The two plots have the same interpretation and can be converted
into each other with (1). However, in the filling phase optimization, the
limits of the tolerance zone are unequal distances from the target state
(− 3% and +2 % from the target), so in this case, it is more beneficial to
show the state values instead of the collected reward. In contrast, in the
optimization of the holding phase, the limits are equidistant from the
target state (±0.5 % from the target), so the collected rewards are shown
in this case because this is a more common practice in the literature.

2.4.1. The state space for the filling phase
The state value for filling optimization is calculated from three parts.

The first part of the state is calculated from the detected product from
the image (2). In this equation npixel stands for the number of white pixels
detected during part detection, S1 stands for the image state, and ngoal
stands for the number of pixels needed for the filled product in the
image.

S1 =
npixel
ngoal

∗ 100, (2)

The second part of the state is calculated from filling time. Filling
time is a target value, and if the machine fills the mold in less time, it is
good for the learning algorithm, but it is not necessarily an advantage.
Therefore, a ramp function was used (3) to transform the data. In this
equation, tfill stands for filling time (Fig. 8), S2 means the time state and
tgoal means the ideal filling time. This function transforms the ratio into a
percentage of filling compared to the goal.

S2 =max
(
tfill
tgoal

∗ 100,100
)

, (3)

The third part of the state was calculated in a similar way. This time,
a pressure limit value was used, and if the measured maximum pressure
was smaller than this limit, the value was transformed to 100; otherwise,
the ratio of the two pressures was used (4). In this equation, Pmax is the
measured maximum pressure, S3 stands for the pressure state and Plimit is
the predefined pressure limit.

S3 =max
(
Pmax
Plimit

∗ 100,100
)

, (4)

The state for filling can be defined from these three parts with a
piecewise function (5), where Sfill stands for filling state. This function
uses the state part from the image if the value of the pixel ratio is smaller
than 97 %, the power mean of the pixel ratio, and filling time if the pixel
ratio is less or equal to 99.5 % but more than 97 %. When the pixel ratio
showed an almost entirely filled product (more than 99.5 %%), then the
power mean of the pressure ratio and the filling time ratio was used. This
way, if the cavity is not filled, the learning algorithm does not take the
pressure into account since filling did not achieve its goal. However, if
the cavity is filled sufficiently, the pressure and filling time will influ-
ence whether filling is good.

Sfill =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 if S1 ≤ 97
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S12 + S22

2

√

if 97 < S1 ≤ 99.5

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

S22 + S32

2

√

if 99.5 < S1

, (5)

From function (5), the state in the test space for each product can be
derived from the measured data (Fig. 11). The same filling time goal
(tgoal) was used for each product (0.2 s) and the pressure limit (Plimit) was

Fig. 10. a) Example of the observed state values during learning b) example of the collected rewards during learning.
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the same for each product (220 bar) except for the plate with 2.5 mm
thickness and the lid product. In the case of 2.5 mm thick plates, this was
necessary because the pressure does not go as high with thicker products
as with thinner ones, and to fill a cavity with more melt takes more time.
Therefore, in the case of the 2.5 mm thick plate, the pressure limit was
50 bar, and the filling time goal was 0.4 s. In the case of lid products, the

filling time goal was 0.3 s, and the in-mold pressure limit was 240 bar
because this is a more complex product with a much smaller gate, more
features on the product (tubes, ribs), and some of these are much
thinner, while others are thicker than the original plates.

State aggregation is needed for the algorithm, and the state values
were plotted according to the aggregation. In addition, the target state

Fig. 11. The state space for different products a) plate 1.2 mm thick with a fan gate from ABS, b) plate 1.2 mm thick with a double gate, c) plate 1 mm thick with a
film gate, d) plate 2.5 mm thick with a film gate, e) plate 1.2 mm thick with a fan gate from PLA, f) lid product from ABS.
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was shown separately with dotted lines, which means a function value of
97–102 % for the filling process (Fig. 11). In this way, the algorithm will
adjust the injection molding settings so that the cavity will not be
overfilled and will not be too unfilled. Another state aggregation can be
used, but prior knowledge should be derived from a similar state ag-
gregation. Fig. 11 shows significant differences between the state spaces
of the products. In general, however, they are all similar in that the
product is unfilled (≪100 %) at high switch-over volumes, overfilled at
low switch-over volumes (≫100 %), and the acceptable window is
greater with higher injection flow (>30 cm3/s) than with low injection
rates (<30 cm3/s).

2.4.2. The state space for the holding phase
The state value for holding phase optimization can be described

much more easily. For this, only the measured product weight was used.
Weight measurement is very simple and can be automated easily, so it
would not be very difficult to link the algorithm to the injection molding
machine and a balance. Therefore, the state value was calculated from
the ratio of the weight of the part produced in the actual cycle (mactual) to
the target weight (mgoal) (function (6) where Shold stands for holding
state). The state aggregation is shown for each product that was used for
the experiments (Fig. 12). Unlike filling, the target aggregated state here
is symmetric, since the goal was to make a product with a given weight
within a certain tolerance ( ± 0.5 %)

Shold =
mactual

mgoal
• 100 (6)

2.4.3. Limitations of the algorithm
The advantage of the presented algorithm is that it can learn how to

behave in a given environment and use this knowledge in a new,
somewhat similar, but still different environment. One of the biggest
disadvantages comes from this option. Trying to apply the acquired
knowledge in a significantly different environment often leads to non-
optimal decisions at the beginning of learning. This follows the need
to behave differently in certain situations than in the previous envi-
ronment. Such cases can arise, for example, if pre-learning is performed
on non-optimized simulation data and post-learning on actual injection
molding data. This can easily happen if the material, mold geometry or
the technology is not accurately modeled in the simulation. During the
experiments, it was shown that some variation in product geometry,
material or even gate geometry does not cause such a great a variation in
the environment that the presented algorithm cannot effectively handle.

There are also further limitations to the algorithm. On the one hand,
the algorithm must use the same number of aggregated states or action
sets during pre- and post-learning. In addition, the aforementioned
aggregated states and actions must be the same for the two learning
processes. For example, if in pre-learning, one aggregated state means
the 90–100 % filled product and in post-learning, the same aggregated
state means 10–20 % filled product, the algorithm will obviously not

Fig. 12. The state space for holding phase optimization for different products a) lid from ABS b) lid from PLA c) plate 1 mm thick with a film gate d) small lid.
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work well. Similarly, if you change the value of the actions that the al-
gorithm can choose in transition from pre-learning to post-learning, the
new actions will cause different effects, so the algorithm must learn how
to use the new actions.

By increasing the value of the learning parameter (α), the values in
each function weight (w and θ) can change more drastically. Therefore,
if a learning parameter with a much larger value is used in post-learning
than in pre-learning, the algorithm can easily favor suboptimal actions.
In such cases, the algorithm often fails to find the best injection molding
combination settings. Otherwise, if a learning parameter with a much
smaller value is used in post-learning, the algorithm just slowly adapts to
differences in the new environment. It is recommended using the same
learning parameter for post-learning as for pre-learning.

3. Results

The presented experiment contains two main parts: filling and
holding optimization. In each part, subparts were made based on the
learning method, such as pre-learning and post-learning. Pre-learning is
when the algorithm is taught for the first time to acquire prior knowl-
edge, which the algorithm uses later in post-learning. Therefore, in pre-
learning, the algorithm learns what to do in different states. Post-
learning was used to check how well the algorithm can use the knowl-
edge it learned when it was adjusting the injection molding settings for
another product.

3.1. Filling phase optimization

The goal of filling phase optimization is to let the algorithm learn
how to fill a cavity in a given time without overfilling it. Therefore, the
algorithm uses the image of the product, the measured maximum
pressure, and the measured filling time. During filling phase optimiza-
tion, the algorithm can change the switch-over volume, which defines
the end position of the screw during injection molding. Therefore, it
influences the volume of the injected melt. In addition, the algorithm
can also change the injection flow, which determines the speed of the
screw. This setting allows the algorithm to indirectly alter the filling
time of the cavity and the pressure in the melt.

3.1.1. Pre-learning for the filling phase
For the optimization of the filling phase the plate with a thickness of

1.2 mm and the fan gate design was used for pre-learning (Fig. 1 e). The
starting injection molding settings were a switch-over volume of 22 cm3

and an injection flow of 15 cm3/s. With this setting combination, the
cavity was not even close to being filled, and the flow of the melt was
relatively slow. Therefore, the cavity will not be overfilled by accident,
and the mold will not be damaged. The algorithmwas able to change the
injection flow by 0,±5,±10, or±15 cm3/s and the switch-over volume
by 0,±1,±2, or±5 cm3. Between two learning steps, the algorithm will
select one value combination for both settings (action) based on its
policy. The end of learning was defined when the algorithm has made
4000 learning steps. The learning algorithm was able to reset the

Fig. 13. Pre-learning from data of plate with 1.2 mm thickness and fan gate a) without restarting, b) with 10 restarts, c) with 20 restarts, d) with 30 restarts.
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injection molding settings to the initial settings after a given step until it
reached 3000 learning steps. Different learning scenarios were carried
out with 0, 10, 20, or 30 restarts in 3000 steps (Fig. 13a–d respectively).
It is clear that after a few hundred steps, the algorithm finds the optimal
setting combinations because the state values go near 100 %. However,
after the algorithm approaches the optimum, it will not really go back to
a worse state, such as the initial state and its surroundings. On the one
hand, this is good because the algorithm is not designed to look where it
does not produce a good product. On the other hand, this way, the al-
gorithm does not discover the optimal choices at the initial states. This is
not the best choice if the algorithm starts from a similar state for another
product. If the algorithm returned to the initial position in sufficient
time, it would reach the target value much faster (see Fig. 13c and d).
The knowledge that the algorithm gathered during pre-learning and
used as prior knowledge was stored in the w and θ weight vectors. These
vectors were the main difference between pre-learning and post-
learning. In pre-learning, the starting values of these weight vectors
were the default (0.5 for each parameter in the vector). In post-learning,
these weight vectors contained the mean values of the 100 pre-learning
scenarios.

3.1.2. The use of prior knowledge from a different gate type
One key part of the design of the injection mold is the gate. During

the filling phase, different gate designs mean, for example, different flow
paths and shear stress in the melt. Therefore, knowing that the algorithm
can be used for products with different gate designs is important. This
implies that post-learning is performed on a product that differs from the
pre-learning product only in the design of the gate (Fig. 14).

During pre-learning, it was clear that the algorithm needed a few
hundred steps to reach the optimum state (see Fig. 13). This means
exactly the same number of injection molding cycles, which takes a lot of
time and produces many defective products. One can imagine pre-
learning as someone trying to learn to use the injection molding ma-
chine. Post-learning, in contrast, is similar to an expert trying to adjust
the machine settings. The results of post-learning from the different pre-
learning settings are in Fig. 15. For the learning algorithm, post-learning
took far fewer steps to get near the optimal state, and the starting slope
of the states was steeper. This phenomenon can be seen in the plotted
distributions, which show the number of injection molding cycles
needed to produce a part with the required quality from the 100

scenarios. 75 % of the data was highlighted on the distribution with
green areas and the upper quartile value of the distribution (Q3) was
marked for clarity. The 75% of the distribution was even narrower when
restarting for pre-learning was applied. There was only a small differ-
ence between the performance of the different restart cases, so in sub-
sequent analyses, the prior knowledge that was derived from pre-
learning with 30 restarts was used. These results showed that if the al-
gorithm learned the optimization process from a mold with a different
gate design, it could find the optimum state in 22 injection molding
cycles in 75% of the cases. The distribution of the required cycle number
was right-skewed, which means that the algorithm mostly found the
optimal settings in a few cycles in most cases. This performance can be
improved if the possible actions are changed or smaller requirements are
used, and the performance could be close to that of a professional
technician. These results show that the learning algorithm can be
applied with prior knowledge to a similar product with a different gate
design.

3.1.3. The use of prior knowledge from a product produced from a different
material

In an industrial environment, producing a product from a different
material may be necessary for sustainability, economic, or engineering
reasons. In such cases, the optimal injection molding settings for the new
material are usually not the same as the optimal settings for the previous
material. Therefore, this may change the optimal injection molding
settings because different materials can have different specific volumes,
melt flow index, etc., so it is important to investigate whether the al-
gorithm can use prior knowledge derived from another material to a new
one for the filling phase. For this, the same plate was used with 1.2 mm
thickness and a fan gate as for pre-learning, but this time, it was molded
from PLA instead of ABS.

In order to show the effect of the material on post-learning, post-
learning scenarios were performed with data from the original ABS
material (Fig. 16 a) and with data from the new PLAmaterial (Fig. 16 b).
A comparison of the two post-learning processes shows that the case
with ABS was better. However, in this case, the same data (i.e. product)
was used for pre-learning and post-learning, so it was expected to have
better performance. With this in mind, the performance of the PLA part
was very good since the Q3 values in the two cases compared differed
only by five injectionmolding cycles, even though a completely different

Fig. 14. Plate with 1.2 mm thickness a) with a fan gate design b) with a double gate design.
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material was used in production. This result suggests that this method
can be used with different materials.

3.1.4. The use of prior knowledge from a product with a different thickness
In practice, a company may produce similar products with different

features such as thickness, nominal size, etc. Hence, it is also interesting

Fig. 15. Post-learning from data of the plate with 1.2 mm thickness and a double gate and the required cycles to reach the goal state a) without restarting, b) with 10
restarts, c) with 20 restarts, d) with 30 restarts.

Fig. 16. Comparison of post-learning from different materials with 1.2 mm thick plate products a) product from ABS (same as pre-learning), b) product from PLA.
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whether the algorithm can use its prior knowledge for products with
different thicknesses. For this purpose, plates with a thickness of 1 mm,
1.2 mm, and 2.5 mm (Fig. 17) were molded. The 1.2 mm thick plate was
used for pre-learning, and then a thicker and thinner plate for post-
learning. The thickness of the product is important in the filling phase
because thinner products may freeze off if the injection flow is too low
but need less melt to fill the cavity. Therefore, the injection molding
settings can be very different for a product with a different thickness.

Fig. 18 shows the result of post-learning on 1 mm and 2.5 mm thick
plates. Of the two cases, the optimization for the 1 mm plate was more
efficient with the given prior knowledge. For the 2.5 mm thick plate, the
search space (Fig. 11 d) changes much more when the part is overfilled.
In contrast, the search space changes less while the part is underfilled.
The specified pressure limit can explain the former phenomenon since
this limit is 50 bar for the 2.5 mm plate (instead of 220 bar), which
means a 5–10 bar change is significantly larger in proportion. The
smaller change in the unfilled area is a consequence of the thickness of
the cavity (and therefore, the product), as the same amount of melt will
cause a smaller change during filling. These two effects make it harder
for the algorithm to find the optimal state since the same actions will
have a smaller effect when the part is underfilled and a larger effect
when the part is overfilled. As Fig. 18 b shows, the algorithm starts from
a much better state value than in the other cases. This is due to the fact
that the algorithm changes only the injection flow and switch-over
volume but not the prepared shot volume, which was set up on the in-
jection molding machine. If the shot volume is larger, then the same
switch-over will result in more melt in the cavity. This study regarded
this part of the injection molding adjustment as the dosing phase, so the
learning algorithm does not address it, nor does it address the optimi-
zation of the mold closing and opening phase. The only requirements are
that the shot volume has to be greater than the possible switch-over
volumes, and the shot volume used must be constant for the given
learning process.

3.1.5. The use of prior knowledge from a product with a different geometry
for filling

Changing the material for a given product is not uncommon in
practice, but it is even more common for a company that wants to make
a new product. In such cases, the results of injection molding simulations
can help set the machine parameters. However, the software license is
relatively expensive and using the software requires considerable
expertise. Also, the simulations should usually be optimized based on
real injection molding experiments. Consequently, such a process re-
quires a lot of time, material, andmoney. In order to replace this process,
the performance of the learning algorithm was investigated by using
prior knowledge from the injection molding of a product with a given
geometry for products with other geometries.

For these analysis, the lid product (Fig. 1 b) was used for post-
learning because it contains many different features that the plate
product does not. Therefore, it is sufficiently different from the original
product. This difference is also clearly visible in the search space

(Fig. 11a–f). The lid product also contains significantly thinner parts,
which is why the in-mold pressure can rise much higher than in the case
of the plate product. The effect of this phenomena can be seen in Fig. 19
when the state values increase above 150 %.

3.2. Holding phase optimization

The goal of holding phase optimization is to fine-tune the weight of
the product. However, the holding phase has many general purposes,
such as reducing shrinkage and sink marks. With the right measuring
system and metric, the algorithm can be applied for these criteria
similarly to the algorithm worked with product weight measurement.
The holding phase comes after filling because the injected melt starts to
cool and shrink. Therefore, additional melt is injected into the cavity at a
given pressure (holding pressure) for a given time (holding time).
Through this, the weight of the product changes but only slightly
compared to the change in product weight during filling. During holding
phase optimization, the algorithm can change holding pressure and
holding time independently. There is a limit to the holding time for
conventional cold runner molds, but one should not necessarily set a
longer holding time than this limit. This limit is determined by the gate
and the temperature conditions in the mold because the gate solidifies
(freezes) after a given time. After this so-called freeze-off time, no more
melt can be injected into the cavity. This is shown in Fig. 12; no sig-
nificant change can be seen for a given holding pressure after a given
holding time. Gate freeze-off time was not considered in the analysis, but
injection molding scenarios were performed to get measurement points
afterward.

3.2.1. Pre-learning for the holding phase
In this holding phase optimization, the ABS lid part (Fig. 1 b) was

used for pre-learning. This product has a complex geometry with a
simple point-like gate. The algorithm can change holding pressure with
0,±25,±50, or±100 bar and holding time with 0,±0.5,±1, or±2 s
independently. Therefore, according to its policy, the algorithm will
select one of the 49 (7 × 7) setting change combinations (49 actions).
The end of learning was defined when the algorithm has made 6000
learning steps. During the analysis, more learning steps were used than
during filling optimization because the algorithm needed more steps to
learn the optimal policy. 100 learning scenarios were made with the
selected algorithm settings similar to filling optimization and different
learning scenarios with 0, 10, 20, or 30 restarts in 3000 steps (Fig. 20a–d
respectively) were made. The initial injection molding settings are 0 bar
holding pressure and 0 s holding time. These setting combinations for
pre-learning were chosen for security reasons. Too much holding pres-
sure can open up the mold, which can cause flash on the product and
damage the mold. In contrast to filling phase optimization, it is not clear,
whether increasing the number of restarts would significantly reduce the
initial steps. This phenomenon is probably due to the non-linearity of the
search space near the starting settings. However, at the end of learning,
the algorithm approaches the goal quite well. Of course, 6000 learning

Fig. 17. The plates used with different part thicknesses.
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steps is a lot if it would take the same number of injection molding cycles
to learn the policy. Therefore, it is recommended to use a design of ex-
periments to generate the data needed for pre-learning.

3.2.2. The use of prior knowledge from a different material
Earlier, the analysis for the post-learning for a new material (PLA) in

filling optimization was presented (see 3.1.3). Of course, a change in the
material also changes the optimal settings for the holding phase too.
Different materials may require different processing temperatures (and
consequently gate freeze-off times will be different), which can affect
the required holding time. Besides, the shrinkage of the product and
weight compensation can differ, too.

Fig. 21 a shows the result of post-learning with the new material. It
takes far fewer learning steps to reach the optimal weight than during
the pre-learning. In addition, Fig. 21 shows the distribution of howmany
learning steps (injection molding cycles) are needed for the algorithm to
first produce a product with the required part weight in each of the 100
learning scenarios. In 75 % of the cases, it takes less than 20 learning
steps for the algorithm to reach the goal. However, this would mean the
production of scrap in 19 injection molding cycles, which is still not
acceptable in some cases. It is clear from the initial stage of the reward

function that the algorithm chooses actions that significantly reduce the
error. Therefore, the main problem with learning is probably not its
decision-making but that the initial injection molding settings are far
from the settings producing the target. Since part of the learning task is
to find these injection molding settings, the optimal settings found
during pre-learning could be used as initial injection molding settings
for post-learning. However, pre-learning consists of 100 different
learning scenarios, each with 6000 learning steps. Therefore, for each of
the 100 learning scenarios, all the injection molding settings were
retrieved from the last 500 learning steps and chose the most frequent of
these as the initial injection molding settings of post-learning. The re-
sults of post-learning with the new initial settings shows the advantage
in Fig. 21 b compared to Fig. 21 a. From the distribution shown here, it is
clear that in 75 % of the cases, fewer than four injection molding setting
changes are sufficient for the algorithm to make a product of the desired
quality. The major drawback of this solution is that the optimum in-
jection molding settings of the product used for pre-learning may differ
significantly from the optimum of the product used for post-learning. If
this is the case, this method is only useful if the new initial settings are
closer to the target settings than the default ones. In conclusion, this
study showed that prior knowledge can be effectively applied to the
algorithm for holding phase optimization to produce a product with the
same nominal geometry using a new material.

3.2.3. The use of prior knowledge from a different geometry
The possibility of using prior knowledge from different products

during filling has already been shown (see Fig. 19). However, it is also
important to investigate whether prior knowledge from other geome-
tries can be used to optimize the holding phase. The amount of
compensation may vary from one product to another due to product
volume or features on the product (ribs, tubes, thickness changes). In
addition, the size and design of the gate may also vary for different
products, and thus, the optimum of the holding phase may differ.
Therefore, the effect of prior knowledge on holding phase optimization
with products of different shapes, sizes, and gate geometries was
investigated. The learning algorithm trained itself on the lid product
(pre-learning). After that, it used the plate product with 1 mm thickness
and the small lid products for post-learning (Fig. 22).

The plate product has a film gate, unlike the lid or small lid products,
which have a point-like gate. The difference between the gate designs
can cause a variation in the effect of holding time. The small lid is part of
a 16-cavity mold, so holding pressure and holding time affect 16 prod-
ucts simultaneously. Besides, the small lid is significantly smaller and
thinner. Therefore, the two chosen products significantly differ from the

Fig. 18. Post-learning for the plate with a thickness of a) 1 mm and b) 2.5 mm (Pre-learning for the plate with a thickness of 1.2 mm).

Fig. 19. Post-learning for the lid product produced from ABS (Pre-learning
from the plate with a thickness of 1.2 mm).
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lid. The results of post-learning are shown in Fig. 23. The results of post-
learning with the initial injection molding settings (Fig. 23 a and c) show
that within 20 (for the plate) or 16 (for the small lid) injection molding
cycles, the algorithm reaches its goal in 75 % of the cases. This is not a
bad performance for completely new products, but it is important to

note that this is only holding phase optimization. Therefore, learning
scenarios were performed with the starting point defined from pre-
learning (Fig. 23 b and d). These results show that the initial injection
molding settings can significantly reduce the number of cycles needed.

Fig. 20. Pre-learning from the data of lid product a) without restarting, b) with 10 restarts, c) with 20 restarts, d) with 30 restarts.

Fig. 21. Post-learning on lid data with PLA (Pre-learning from lid data with ABS) a) with the initial starting point, b) with a starting point defined from pre-learning.
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3.3. The performance of the algorithm for optimization

Previously, it was presented how prior knowledge can be used for the
learning algorithm in different cases. During the analysis of post-
learning results, it was examined how many injection molding cycles
were necessary for the algorithm to make a good product for the first
time in the new environment. During the analysis, the performance of
the learning algorithm was investigated with 100 learning scenarios for
each product combination. From these 100 learning cases, a distribution

from the required number of learning steps (injection molding cycles) of
the algorithmwasmade to produce a product with the needed quality. In
this chapter, a quick comparison is shown between the different post-
learning results and the results of different distributions for better
interpretation.

3.3.1. Comparison of the effect of different prior knowledge for filling phase
optimization

For the filling phase optimization, prior knowledge was provided by

Fig. 22. The products used for holding phase optimization lid (left), plate (middle), small lid (right).

Fig. 23. a) Post-learning for the plate product with the default starting settings b) post-learning for the plate product with a starting point defined from pre-learning
c) post-learning for the small lid product with the default starting settings d) post-learning for the small lid product with a starting point defined from pre-learning.
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pre-learning on a plate product with 1.2 mm thickness and a fan gate
design (Fig. 1 e). The performance of the learning algorithm was
examined when it used prior knowledge in the production of the same
product or in the production of parts with different geometries and
material. The different metrics of the distribution derived from the
learning scenarios can be seen in Table 5.

The results show that the performance of the algorithm was the best
when the same product was used for pre- and post-learning. This is not
surprising since prior knowledge contained information related to the
optimal decisions for the given product. The second best case was when
the geometry of the product was not changed between the two learning
processes, only the material. In such a case, the difference occurring
during the filling phase depends mostly on the rheological properties of
the materials. The learning that took the longest (93 cycles) was when
the algorithm had to use prior knowledge for a completely new geom-
etry (lid product). In this case, the in-mold pressure, the required filling
time and the different features of the product (ribs, tubes) may have
caused large differences in the effect of individual injection molding
parameters. It is also important to note that this value of 93 cycles is an
outlier in the distribution (Fig. 19) and therefore does not represent the
differences in learning well by itself. The mean or median values of the
distributions show that there are no large differences between the in-
dividual use of prior knowledge.

3.3.2. Comparison of the effect of different prior knowledge for holding
phase optimization

Prior knowledge was provided for the holding phase optimization by
pre-learning the ABS lid product (Fig. 1 b). In this optimization, two
methods can be distinguished: post-learning starting from 0 bar holding
pressure, 0 s holding time, and learning with a starting point defined
from pre-learning.

In the former case (Table 6), it is clearly visible that post-learning
was the fastest in the case of the small lid product. This is not so sur-
prising as it is in this search space that the widest combination of settings
can be used to produce a good product. This is due to the fact that the
injection molding machine fills 16 cavities with the same geometry at
the same time, so the effect of the melt is divided between these cavities.

Similar results can be seen in the case when the starting point was
determined from pre-learning (Table 7). The number of cycles here is
significantly smaller since the algorithm started the exploration closer to
the optimal settings. However, it is important that the starting point
determined in this way is not always closer to the optimum in a new
environment. Even with this starting point, there is a learning case that
requires a large number of cycles (91 cycles). This may be due to the fact
that the range of optimal settings for the plate product (Fig. 12 c) is
narrower compared to the one in pre-learning (Fig. 12 a), so the algo-
rithm probably skips this range during exploration. It is clear from the
other metrics of the distribution that this is not the typical required cycle
number here either; it is also just an outlier.

4. Conclusion

This study shows that using prior knowledge to optimize the filling
and holding phases for injection molding is worthwhile. However, the
presented method only works for an actor-critic algorithm with state
aggregation and discrete actions. The learning method consists of two
main steps: a pre-learning step, during which the algorithm learns how
to set up the injection molding machine, and a post-learning step, during
which the algorithm uses so-called prior knowledge (from the pre-
learning step) to set up the machine for a new product.

A method based on pressure measurement and image processing was
presented for filling phase optimization. In the analysis, it was shown
that the algorithm can learn to set the injection molding machine from
products with different gate designs, materials, part thickness, or ge-
ometry. With the use of prior knowledge, the learning algorithm can set
up the injection molding machine to produce parts with the required
quality despite these changes (gate, material, etc.). This study concludes
that for the learning algorithm, the changes in geometry are more
challenging to handle than changes in material for filling phase opti-
mization (Table 5). However, the method can be applied with good
performance in all cases, and the use of this method is recommended in
industrial environments.

Moreover, the presented method is able to fine-tune product weight
by optimizing the holding phase. The results show that the algorithm
can be used for products with different types of gates, part geometry,
and materials. In this investigation, two different settings were used for
the learning algorithm: one with the original starting point (with 0 bar
holding pressure and 0 s holding time) and one with a starting point
derived from pre-learning. The former settings were the original settings
for safety reasons (these results can be seen in Table 6). However, it was
also investigated how much it can help the optimization process if the
starting point is derived from pre-learning (it can also be found as prior
knowledge). These results (Table 7) showed that the starting point had a
significant effect on learning, and the performance of this method is
comparable to that of a good technician.
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Table 5
The summary of the post-learning results for filling phase optimization.

Pre-learning data Post-learning data Distribution of cycle number until the first acceptable product is made

Minimum Q1 (best 25 % of the
cases)

Mean Median Q3 (best 75 % of the
cases)

Maximum

1.2 mm thick plate (fan gate) from
ABS

1.2 mm thick plate (fan gate) from
ABS

3 7 10.11 9 12 30

1.2 mm thick plate (double gate) 4 9 17.21 13 22 77
1.2 mm thick plate (fan gate) from
PLA

4 8 12.46 11 17 41

1 mm thick plate (film gate) 4 9 13.55 12 16 45
2.5 mm thick plate (film gate) 5 9 14.98 13 18 69
Lid (ABS) 3 9 15.68 13.5 20 93
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[6] S. Horváth, J.G. Kovács, Effect of processing parameters and wall thickness on the
strength of injection molded products, Period. Polytech. - Mech. Eng. 68 (1) (2024)
78–84, https://doi.org/10.3311/PPme.24068.

[7] S. Krizsma, A. Suplicz, Comprehensive in-mould state monitoring of material
jetting additively manufactured and machined aluminium injection moulds,
J. Manuf. Process. 84 (2022) 1298–1309, https://doi.org/10.1016/j.
jmapro.2022.10.070.

[8] M. Moayyedian, K. Abhary, R. Marian, Gate design and filling process analysis of
the cavity in injection molding process, Advances in Manufacturing 4 (2016)
123–133, https://doi.org/10.1007/s40436-016-0138-5.

[9] M. Myers, R. Mulyana, J.M. Castro, B. Hoffman, Experimental Development of an
injection molding process window, Polymers 15 (15) (2023) 3207, https://doi.org/
10.3390/polym15153207.
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[32] A. Benešová, J. Tupa, Requirements for education and qualification of people in
Industry 4.0, Procedia Manuf. 11 (2017) 2195–2202, https://doi.org/10.1016/j.
promfg.2017.07.366.

[33] C. Combemale, K.S. Whitefoot, L. Ales, E.R. Fuchs, Not all technological change is
equal: how the separability of tasks mediates the effect of technology change on
skill demand, Ind. Corp. Change 30 (6) (2021) 1361–1387, https://doi.org/
10.1093/icc/dtab026.

[34] A. de Giorgio, A. Maffei, M. Onori, L. Wang, Towards online reinforced learning of
assembly sequence planning with interactive guidance systems for industry 4.0
adaptive manufacturing, J. Manuf. Syst. 60 (2021) 22–34, https://doi.org/
10.1016/j.jmsy.2021.05.001.

[35] P. Garrad, S. Unnikrishnan, Reinforcement learning in VANET penetration testing,
Results in Engineering 17 (2023) 100970, https://doi.org/10.1016/j.
rineng.2023.100970.

[36] F. Guo, X. Zhou, J. Liu, Y. Zhang, D. Li, H. Zhou, A reinforcement learning decision
model for online process parameters optimization from offline data in injection

molding, Appl. Soft Comput. 85 (2019) 105828, https://doi.org/10.1016/j.
asoc.2019.105828.

[37] S. Lee, Y. Cho, Y.H. Lee, Injection mold production sustainable scheduling using
deep reinforcement learning, Sustainability 12 (20) (2020) 8718, https://doi.org/
10.3390/su12208718.

[38] Y. Qin, C. Zhao, F. Gao, An intelligent non-optimality self-recovery method based
on reinforcement learning with small data in big data era, Chemometr. Intell. Lab.
Syst. 176 (2018) 89–100, https://doi.org/10.1016/j.chemolab.2018.03.010.

[39] H.I. Ugurlu, S. Kalkan, A. Saranli, Reinforcement learning versus conventional
control for controlling a planar bi-rotor platform with tail appendage, J. Intell.
Rob. Syst. 102 (2021) 1–17, https://doi.org/10.1007/s10846-021-01412-3.

[40] J.E. Sierra-Garcia, M. Santos, Combining reinforcement learning and conventional
control to improve automatic guided vehicles tracking of complex trajectories,
Expet Syst. 41 (2) (2024) e13076, https://doi.org/10.1111/exsy.13076.

[41] Z. Wang, T. Hong, Reinforcement learning for building controls: the opportunities
and challenges, Appl. Energy 269 (2020) 115036, https://doi.org/10.1016/j.
apenergy.2020.115036.
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