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A B S T R A C T   

In this paper, we present a novel approach combining widely available techniques, oscillatory shear rheometry 
and dynamic mechanical analysis to obtain wide-frequency range master curves. We carried out finite element 
analysis to investigate the influence of the specimen thickness and Poisson’s ratio on the moduli measured with a 
shear sandwich clamp in solid-state. We demonstrated that the thickness/height ratio of the specimen greatly 
influences its shear stress state. Using polystyrene, which is a thermorheologically simple thermoplastic, we 
showed that continuous master curves can be generated from melt-state torsion and solid-state shear tests. Our 
results can facilitate the characterisation of polymers from viscous to elastic state and the development of test 
methods that use more accurate calculations.   

1. Introduction 

Polymers are viscoelastic materials, i.e. they exhibit both liquid-like 
(viscous) and solid-like (elastic) properties. Consequently, their rheo-
logical properties are time- and frequency-dependent [1]. 

There are many applications where wide-frequency rheological data 
are used to deduce molecular structure. This rheological behaviour is 
significantly influenced by the molecular weight and dispersity, as well 
as by their molecular architecture, e.g. chain branching [2]. Therefore, 
by using reptation theory-based models, it is possible to estimate the 
frequency-dependent rheological behaviour of entangled linear poly-
mers from their molecular weight distribution (direct problem) [3] or to 
predict the molecular weight distribution from their wide-frequency 
rheological data (inverse problem) [4]. Although the latter is an 
ill-posed problem, it can be solved by an efficient numerical algorithm or 
by postulating the unknown molecular weight distribution with suitable 
functions, e.g. by generalized exponential (GEX) distribution functions 
[5–7]. Schanbag [8] used a Bayesian data analysis technique to solve the 
inverse problem and developed an algorithm, which can be useful for 
identifying unknown linear and star polymers and blends based on their 

frequency-dependent rheological behaviour. In the case of polymers 
with complex architecture, wide-frequency rheological data can be an 
excellent complement to classic characterisation techniques such as size 
exclusion chromatography, and it can be used to validate an assumed 
structure [9]. 

Wide-frequency rheological data can also be used to support the 
engineering design. Pelayo et al. [10] fitted a Prony-series to the 
wide-frequency master curves of polyvinyl butyral (PVB) and used the 
results to simulate the mechanical response of a laminated glass element 
containing PVB layers to dynamic loading. Fenton et al. [11] designed 
and synthesised 12 conjugated polymers with aromatic backbones, then 
used the characteristic points of wide frequency master curves (e.g. 
plateau modulus and Rouse time of an entanglement strand) to propose 
a simple crossover equation between Kuhn-length, Kuhn monomer 
volume and the plateau modulus. Their findings can greatly facilitate the 
design of implantable bioelectronics. Cai et al. [12] used wide-frequency 
rheological data to validate a so-called brachiation model which they 
proposed. The model can link the molecular-scale properties with bulk 
mechanics for dynamically associating polymer networks, which can be 
used as self-healing materials. 
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Determining frequency-dependent rheological properties over a 
wide frequency range requires a multi-step test and analysis process. The 
two widely used instruments for the characterisation of viscoelastic 
materials are oscillatory shear rheometers for polymer melts and solu-
tions [13,14] and dynamic mechanical analysers (DMA) for solids 
[15–18]. These instruments typically have a measurement range 
0.01–100 Hz, but characterising a polymer’s rheological behaviour from 
ideally viscous to ideally elastic requires a range of 10–15 decades. Some 
oscillatory shear rheometers can accurately measure at frequencies 
lower than 0.01 Hz [19–21]. However, these tests could take days or 
even weeks, and this long time can lead to changes in material structure, 
e.g. the degradation of the sample, which can affect the results. 

To extend the measurement range, instead of long-term tests, a 
widely used method is to apply the time–temperature superposition 
(TTS) principle [22,23], described in detail by Ferry [24]. Materials to 
which TTS can be used are called thermorheologically simple [25]. TTS 
is based on analogue effects, e.g. both increasing the test temperature 
and decreasing the test frequency soften polymers the same way. The 
changes in material properties (e.g. modulus) between solid-like and 
liquid-like behaviour are of several orders of magnitude. Therefore, 
describing rheological behaviour from the viscous to the glassy state 
with a single instrument can be difficult. One possible solution to this 
problem is small-diameter parallel-plate (SDPP) rheometry [26]. Man-
gal et al. [27] used this method to characterise the viscoelastic behav-
iour of polymer–nanoparticle composites over a wide frequency range of 
10–14 decades, from viscous to elastic behaviour, with a 3 mm diameter 
parallel plate fixture. Zhong et al. [28] used pairs of plates with 8 and 4 
mm diameters to systematically study the linear viscoelastic behaviour 
of polystyrene (PS) melts and solutions over a 10-decade frequency 
range, from viscous to elastic behaviour. However, due to the finite 
torsional stiffness of the parts of the rheometer, a correction of instru-
ment compliance is required, and in this case, even a small deviation in 
test specimen size can cause a significant error [29]. 

The other option to extend the frequency range of dynamic rheo-
logical tests is to convert the results of creep tests performed in the time 
domain into the frequency domain [30,31]. The advantage of the 
method is that it can be used even when TTS is not applicable. However, 
the obtained results depend on the conversion method used. In addition, 
during the creep test, the sample is exposed to high temperatures for a 
long time, which can lead to degradation, affecting the results. 
Furthermore, finding the stress required for linear viscoelastic (LVE) 
creep tests can be time-consuming, as several preliminary creep tests are 
needed to map the independence of creep compliance from the applied 
stress. He et al. [32] carried out the complete LVE characterisation of 
two, branched polypropylenes having long relaxation times by 
combining oscillatory shear data with creep data. You and Yu [33] used 
this method to determine the LVE behaviour of PMMA-based nano-
composites over a wide frequency range. 

Another option for extending the measurement range is to use special 
instruments such as subresonant piezo rheometers, bulk resonators or 
ultrasound rheometers to investigate the rheological behaviour of 
polymers up to 108 Hz [34]. Athanasiou et al. [35] presented a piezo-
electric sliding-plate rheometer, which is suitable for testing viscoelastic 
and fragile samples from 10 Hz to 1 kHz. Szántó et al. [36] used a 
conventional rheometer combined with a piezoelectric rotary vibrator 
and a quartz resonator to determine the rheological behaviour of various 
polyethylene, poly(vinyl acetate) and poly(ethylene-co-vinyl acetate) 
copolymer samples in a broad frequency range, including the MHz 
range. These techniques are typically used to complement the conven-
tional testing methods and can also be used even when TTS is not 
applicable. However, these are usually custom-built instruments and are 
not widely available. 

The aim of this study is to develop a feasible method for obtaining the 
rheological properties of thermoplastic polymers over the widest fre-
quency range possible. For this purpose, we chose widely available in-
struments (oscillatory shear rheometer and DMA). We chose 

polystyrene, a thermorheologically simple, amorphous, linear homo-
polymer widely studied in rheology literature as the model material. 
Using simplified mechanical models of the different loading modes, we 
showed that a continuous master curve can be constructed from melt- 
state torsion and solid-state shear tests. The proposed method is suit-
able for exploring the relationships between flow properties and mo-
lecular structure, and it can also be used to optimise processing. 

2. Materials and methods 

2.1. Concept 

The frequency-dependent rheological behaviour of an amorphous, 
linear thermoplastic polymer can be divided into four regions: the ter-
minal, the rubbery plateau, the transition and the glassy regions. The 
boundaries of these regions are defined by the crossover points of the 
storage and loss modulus curves (Fig. 1/a). At low frequencies, the loss 
modulus (G″) dominates over the storage modulus (G′), therefore the 
material exhibits viscous behaviour (δ is close to 90◦), while at very high 
frequencies, the material behaves elastically, with G′ dominating (δ 

being close to 0◦). The viscoelastic nature of an amorphous, linear 
thermoplastic polymer can be clearly understood if the phase angle (δ) is 
plotted as a function of the absolute value of the complex modulus (|G∗|). 
This way, we obtain the so-called van Gurp-Palmen (vGP) plot [37], also 
known as the Booij-Palmen plot [38] (Fig. 1/b). 

To characterise a polymer from ideally elastic to ideally viscous 
behaviour, an extensive temperature range is required: a set of experi-
ments should be carried out starting from temperatures below the glass 
transition temperature (Tg) to temperatures above the flow temperature. 
However, this requires a carefully thought out solution, which can 
provide reliable results despite the significant change in modulus due to 
temperature changes. 

Therefore, we investigated whether the rheological shear properties 
(see Supplementary Section S1) measured in the solid state with a DMA 
and in the melt state with an oscillatory shear rheometer can be pooled 
to obtain the frequency-dependent rheological behaviour from the 
ideally viscous to the ideally elastic state. We examined the applicability 
of this novel method based on theoretical mechanical considerations and 
experimental tests. 

The main idea is that the vGP plot is closely related to molecular 
structure, independent of temperature and of frequency (except at the 
glass transition region). Practice shows that the measurement of the 
total vGP curve of an amorphous thermoplastic polymer usually cannot 
be carried out with a single measurement setup. Assuming ideal 
measuring instruments and conditions, frequency sweep test results 
obtained at different temperatures and/or frequencies will provide 
different sections of the same polymer-specific vGP curve. Therefore, 
different instruments can be used to obtain the different sections of this 
curve. To obtain the total vGP curve accurately, there has to be an 
overlap between the resulting curves measured with different in-
struments in the terminal or the rubbery plateau region. Based on the 
total vGP curve obtained from frequency sweeps, the rheological 
behaviour of the examined thermoplastic polymer can be characterised 
over the widest frequency range possible. 

2.2. Material and sample preparation 

The polystyrene (PS) used in this study was a general-purpose grade, 
Edistir N 3840 (supplied by Versalis, San Donato Milanese, Italy) with a 
Young’s modulus of 3250 MPa (at room temperature), a density of 1.05 
g/cm3 and an MFI (200 ◦C/5 kg) of 10 g/10 min according to the 
manufacturer’s data. The number (Mn) and weight average (Mw) mo-
lecular weight of this material are 119.3 and 221.3 kg/mol, respectively 
(measured for this research by gel permeation chromatography). For the 
tests, we made 160 mm × 160 mm sheets by compression moulding at 
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220 ◦C with a Teach-Line Platen Press 200E (Dr. Collin GmbH, Munich, 
Germany) machine using 0.5-1-, 2-, 3- and 4-mm thick steel press 
frames. The steps of moulding were the following: i) the press plates 
were preheated at 0 MPa for 3 min, ii) the raw material (PS) was loaded 
into the press frame and preheated for 1 min without applying pressure, 
iii) the sheets were pressed at 5 MPa hydraulic pressure (pressure on the 
sample surface was 0.625 MPa) for 1 min, iv) the sheets were pressed at 
10 MPa hydraulic pressure (pressure on the sample surface was 1.25 
MPa) for 1 min, v) the sheets were pressed at 20 MPa (pressure on the 
sample surface was 2.5 MPa) for 3 min, vi) the sheets were cooled down 
with water cooling of the press plates and removed from the press when 
the temperature of the mould reached 30 ◦C. Between the first four steps, 
the mould was opened and closed back again for outgassing. 

We injection moulded type 1A dumbbell-shape specimens (ISO 
527–2:2012) on an Arburg Allrounder Advance 270S 400-170 machine 
(Arburg GmbH, Lossburg, Germany) using a conventional two-cavity 
cold-runner mould for tensile tests to determine the Poisson’s ratio. 
The barrel zone temperatures from hopper to nozzle were 40, 205, 210, 
215, 220 and 220 ◦C. 

The mould was tempered to 30 ◦C. The shot volume was 45 cm3, and 
the injection rate was 44 cm3/s. After injection, a holding pressure of 
500 bar was applied at an injection rate of 20 cm3/s. The clamping force 
was 400 kN. 

2.3. Measuring the average molecular mass 

Gel permeation chromatography/size exclusion chromatography 
(GPC/SEC) analyses were performed using a method described in Mol-
nar et al. [39]. 

2.4. Melt state tests (dynamic rheological analysis) 

To investigate the rheological properties of the PS samples in melt 
state, we used an MCR-301 (Anton-Paar, Graz, Austria) oscillatory shear 
rheometer in a parallel-plate geometry setup with a plate diameter of 25 
mm and a gap size of 1 mm. Small amplitude oscillatory shear (SAOS) 
tests were carried out at 160, 200 and 240 ◦C. The compression moulded 
sheets were cut into small pieces with pliers for the tests. After loading 
the samples, a 3-min retention time was applied to allow relaxation 
processes to take place and achieve thermal equilibrium. We carried out 
controlled-strain frequency sweeps with a strain amplitude of 5 %, 
which was in the linear viscoelastic region (LVER), as verified by strain 
amplitude sweeps. Frequency sweeps were performed in the 0.01–100 
Hz frequency range with 10 points/decade with logarithmic scoring in 
every case. 

2.5. Solid state tests (dynamic mechanical analysis, DMA) 

To investigate the dynamic mechanical behaviour at temperatures at 
which the PS was already acting like a solid and, therefore, could no 
longer be tested with a conventional oscillatory shear rheometer setup, 
we carried out dynamic mechanical analysis (DMA) with a DMA Q800 
device (TA instruments, New Castle, DE, USA) and a shear sandwich 
clamp. We cut 10 × 10 mm samples from the 1, 2, 3 and 4 mm thick 
pressed sheets using a utility knife. Strain and frequency sweep tests 
(described below) were performed on the sheets. 

To validate the results from the shear tests, especially in the tem-
perature range below the glass transition temperature, we carried out 
dynamic tests in tensile mode. We cut 30 mm × 3 mm rectangular 
specimens from the 0.5 and 2 mm thick pressed sheets and performed 
the strain and frequency sweeps using a film tension clamp with a 10 
mm gripping distance. Below 100 ◦C, we used 0.5 mm thick specimens, 
but above 100 ◦C, due to a significant decrease in Young’s modulus, we 
used 2 mm thick specimens, and unlike at other frequency sweeps, we 
reduced the frequency range from 1–100 Hz to 1–40 Hz to achieve ac-
curate results. 

In all cases, tests were carried out in oscillation mode. After loading 
the samples, we set the temperature, and upon reaching it, we applied a 
3-min retention time to allow relaxation processes to take place and 
achieve thermal equilibrium. We carried out controlled-strain frequency 
sweeps in the frequency range of 1–100 Hz in every case (except for tests 
in a tensile arrangement above 100 ◦C) using 10 points/decade with 
logarithmic scoring. The frequency sweeps were carried out at different 
temperatures, between 60 and 150 ◦C in shear mode, and from 30 to 
130 ◦C in tensile mode, in 10 ◦C steps. In some cases, we reduced the 
steps to 5 ◦C to get more detailed results where more significant changes 
occurred. The strain amplitudes were changed with temperature to 
ensure linear viscoelastic responses, as verified by strain amplitude 
sweeps. 

2.6. Determining the Poisson’s ratio 

The Poisson’s ratio was determined at different temperatures with 
uniaxial tensile tests on the injection moulded specimens. A Z250 uni-
versal tensile tester (Zwick Gmbh., Ulm, Germany) was used, equipped 
with a temperature chamber, a 20 kN load cell with a resolution of 0.1 N 
and 20 kN rated Zwick 8355 screw grips. The gripping distance and 
crosshead speed was 115 mm and 1 mm/min, respectively. Three tests 
were carried out at the following temperatures each: 30, 50, 70, 90, 110 
and 130 ◦C. The longitudinal and lateral elongation of the specimens 
were measured with a Mercury Monet (Sobriety, Kurim, Czech Repub-
lic) digital image correlation–based optical strain measuring system 
using a data acquisition rate of 20 Hz, equipped with a 5 MP camera and 

Fig. 1. Theoretical frequency-dependent storage (G′) and loss modulus (G) curves (a) and the van Gurp-Palmen diagram plot (b) for an amorphous, linear, ther-
moplastic homopolymer. 
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two LED lights. The longitudinal and transverse gauge were 50- and 7- 
mm-long line probes, respectively, with a facet size of 25 × 25 pixels. 
The Poisson’s ratio was determined from the longitudinal and lateral 
strain curves plotted as a function of time. First, we cut the initial, un-
certain sections of the curves, then we fit a linear function to the 
remaining, steady slope part of each curve. Finally, we calculated the 
Poisson’s ratio (ν) as the negative ratio of the slopes of the longitudinal 
(aε‖) and lateral (aε⟂) strain curves (Eq. (1)): 

ν= −
aε⟂

aε‖

. (1)  

2.7. Model fittings 

The WLF model was fitted according to the method of Oseli et al. 
[40]. All model fittings were performed with the least squares method in 
the Matlab R2022a software (Mathworks, Natick, MA, USA). 

3. Results and discussion 

3.1. Mechanical models of the different loading modes 

This section summarises the mechanical relationships of the test 
configurations under investigation. Fig. 2 presents the simplified me-
chanical models for three different test setups: uniaxial tensile test (a), 
shear sandwich test (also known as double lap shear test) (b), and tor-
sion test (c). 

In the case of the uniaxial tensile test and shear sandwich test, the 
test specimen had a rectangular prism geometry, while in the case of the 
torsion test, the specimen had a cylindrical shape. The geometric di-
mensions in their undeformed state are depicted in Fig. 2. In uniaxial 
tensile testing, the clamping force exerted by the grips slightly deformed 
the test specimen, an effect that was neglected in subsequent calcula-
tions. In shear and torsion configurations, ideal contact was assumed 
between the test specimens and the gripping structure. During uniaxial 
tensile loading, far from the grips, the strain and stress state of the test 
specimen can be considered approximately homogeneous. However, in 
the case of torsion loading, the stress and strain state within the material 
is non-homogeneous. In the shear configuration, the accuracy of the 
simplified relationship introduced for stress calculation greatly depends 
on the thickness of the test specimen. Section 3.2 provides a detailed 
analysis of this effect. 

In an actual DMA experiment, the prescribed displacements are small 
compared to the dimensions of the test specimens. Therefore, an 
accepted approximation for describing the mechanical behaviour of the 
material during these tests is the theory of small strains and de-
formations. For uniaxial tensile loading, we denote the applied 

displacement as Δl, for shear, it is Δu, and for torsion, the angular 
displacement is Δφ. Eqs. (2)–(4) show the characteristic stress and strain 
for each loading condition. To distinguish these quantities, different 
subscripts are employed: U for uniaxial, S for shear, and T for torsion. 

σU =
FU

AU

=
FU

ab
, εU =

Δl

l
, (2)  

τS =
FS

AS

=
FS

2cw
, γS =

Δu

t
, (3)  

τT =
MT

Ip

ρ =
4MT

rπ4
ρ, γT =

Δφ

h
ρ. (4)  

In Eq. (4) Ip represents the polar second moment of area of the circular 
cross-section and ρ is the radial coordinate in the torsion test. To 
describe purely elastic material behaviour, we use Hooke’s law (Eq. (5)). 
The Young’s modulus (E) is related to the shear modulus (G) via the 
expression E = 2G(1 + ν), where ν is the Poisson’s ratio. Then, the shear 
modulus of the material can be calculated from the measured force (Eq. 
(6)) and torque (Eq. (7)) as: 

σU = EεU → G =
l

2ab(1 + ν)
⋅
FU

Δl
= kU⋅

FU

Δl
, (5)  

τS = GγS → G =
t

2cw
⋅
FS

Δu
= kS⋅

FS

Δu
, (6)  

τT = GγT → G =
4h

rπ4
⋅
MT

Δφ
= kT ⋅

MT

Δφ
, (7)  

where parameters kU, kS and kT are the “geometry factors” commonly 
used in testing devices to consider the effect of geometry. The measuring 
instruments use Eqs. (5)–(7) to calculate modulus. Note that uniaxial 
tensile test gives the Young’s modulus. In the shear configuration, there 
is no analytical solution to this elasticity problem when considering 
actual geometries and boundary conditions. The simplified formula (Eq. 
(6)) is only an approximation, which holds true as t→0. Therefore, we 
examine the shear sandwich test in detail from a mechanical point of 
view in Section 3.2. 

3.2. Investigating the mechanical aspects of the shear sandwich test 

During a shear mode DMA test, both the strain and stress fields are 
non-homogeneous within the material [41]. Furthermore, the solution 
to the elasticity boundary value problem implies that stress concentra-
tion occurs in the corners, causing stress to approach infinity in these 
regions [42]. 

Clearly, real materials cannot endure such stress concentrations. 

Fig. 2. Schematics of the investigated loading modes: a) uniaxial tensile b) shear sandwich c) torsion.  
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There are two extreme scenarios regarding the thickness of the test 
specimen: when the thickness is significantly smaller than the other 
dimensions (thin test specimen) and when it is substantially larger. 
Fig. 3 shows the von Mises stress distribution in a thinner (t /c= 0.3) and 
a thicker (t /c= 3.0) specimen. The colours represent different magni-
tudes of stress. The results were obtained with finite element simulations 
with a fine mesh utilizing eight-node plane strain elements. The primary 
purpose of Fig. 3 is to illustrate the non-homogeneous stress field within 
the specimens. For this, arbitrary material parameters can be used, 
therefore the details of the finite element model are not discussed here. 

For thinner test specimens, the approximate formula for shear (Eq. 
(6)) can be employed, since t is close to zero. In contrast, for thicker test 
specimens, the geometry of the test specimen more closely resembles 
that of a beam, and in this case, the relationship between displacement 
and force is expressed with the use of well-known principles from the 
strength of materials [43]. By rearranging this relationship, we can ex-
press G (Eq. (8)): 

Δu =
1

2
⋅
FSt3

12IE
=

1

2
⋅

FSt3

wc32G(1 + ν)
→ G =

1

2
⋅

t3

2(1 + ν)wc3
⋅
FS

Δu
. (8)  

where I represents the second moment of area about the bending axis. It 
is evident that the resulting relationship is fundamentally different from 
the formula obtained for a thin test specimen. To illustrate the effect of 
geometry, let us introduce the dimensionless parameter η = t/ c, which 
expresses the ratio of thickness (length) to the height of the test spec-
imen. In this case, by substituting η into (Eq. (6)) and (Eq. (8)), the re-
lationships for the shear modulus become: 

Gthin =
1

2
⋅
η

w
⋅
FS

Δu
,Gthick =

1

2
⋅

η3

2(1 + ν)w
⋅
FS

Δu
. (9) 

To distinguish between the two different G values, we have denoted 
them with distinct subscripts in the equations. The ratio of the G values 
calculated with the two different methods is described by a quadratic 
function in terms of η (Eq. (10)): 
Gthick

Gthin

=
η2

2(1 + ν)
. (10) 

The two expressions for G yield the same value when η =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅2(1 + ν)

√ . 
For instance, when ν = 0.3, η equals 1.61, while for = 0.5, η equals 
1.73. For a real test specimen geometry, the value of η is neither zero nor 
infinite—the formulas in Eq. (9) provide an inaccurate estimation of G. 
There is no analytical closed-form solution to the elasticity boundary 
value problem for the FS(Δu) relationship. We can provide an asymptotic 
solution only within the singularity region. However, for us, it is crucial 
to establish the relationship between the displacement applied to the 
structure and the resulting force. To precisely determine the effect of the 
thickness of the test specimen on the calculated value of G with the 
assumption of homogeneous deformation, we constructed a finite 
element model and determined the relationship between the applied 
force and displacement for various thicknesses and Poisson’s ratios. 
With this information, we can gain a detailed understanding of the error 

associated with G obtained under the assumption of homogeneous 
deformation. The detailed description of the finite element model can be 
found in Appendix B. 

During the finite element analysis, we assigned the shear modulus in 
the model and obtained the FS values corresponding to the prescribed Δu 
displacement. With the use of these virtual data, the shear modulus can 
be calculated with the formulas corresponding to the two extreme sce-
narios. The relative error of the two formulas is determined by the for-
mulas in Eq. (11): 

ethin =
Gthin − G

G
⋅100 (%), ethick =

Gthick − G

G
⋅100 (%). (11) 

The change in relative errors with respect to η for various values of ν 

is illustrated in Fig. 4. 
The first significant observation is that in both cases of applying the 

formulas, a smaller G value is obtained than the actual G value of the 
material. It can also be observed that the error of the formula corre-
sponding to thin test specimens tends to approach zero as η approaches 
zero. The error of this formula has an approximately linear dependence 
on η in the η = 0…1 range. For specimens typically used for conven-
tional DMA, the maximum inaccuracy due to geometrical dimensions is 
about 10 %, and the effect of Poisson’s ratio is small within this range. 
Therefore, at a fixed test specimen length, using a thinner specimen will 
result in a more accurate result, but the maximum measurable modulus 

Fig. 3. von Mises equivalent stress distribution for a thinner (t/c = 0.3) and a thicker (t/c = 3.0) specimen.  

Fig. 4. Relative errors of the simplified formulas for different values of the 
Poisson’s ratio. 
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will also be smaller (see Eq. (6)). On the other hand, this formula results 
in significant errors for thick test specimens. For instance, at η = 1 and 
ν = 0.3, the relative error is approximately − 27%. This effect is in 
contrast to the other formula, which provides a zero G value for η→ 0, 
causing the relative error to converge to − 100%. However, the error 
tends to approach zero as the thickness of the test specimen increases. In 
this case, the influence of the Poisson’s ratio is not negligible. Our results 
show that it is preferable to use test specimens with an η ≤ 0.4 or η ≥ 4.6 
because neither of the two formulas gives accurate results in the inter-
mediate range. 

Most DMAs work with the η < 0.4 range, but the numerical results 
obtained in this manner can be utilised to more accurately account for 
the geometry effect in calculations, and can facilitate the development of 
novel test methods, e.g. van’t Hof et al. [44] designed a clamp with η =

5, which can accurately measure materials with high stiffness. 

3.3. Master curve generation method 

In this section, we present the method we developed through tests. 
The idea is to construct a master curve from two different test methods. 
In solid state, we carried out frequency sweep tests with the DMA in 
shear mode (S), and in the melt state, we performed tests with an 
oscillatory shear rheometer in torsion mode (T). The results obtained 
from these two tests should give us the same modulus (see Supple-
mentary material Section S3). 

First, we plotted the van Gurp-Palmen (vGP) plots from each test 
(Fig. 5/a). The curves produced with the same instruments are consis-
tent, but in relation to each other, they are not. There are two regions in 
the vGP curve, where significant scattering can be observed: around the 
local minimum (δmin) and the local maximum (δmax). The scattering 
around δmin and the lower moduli obtained by DMA is probably because 
DMA shear tests in the solid state are affected by several errors such as 
material defects (bubbles, inclusions, inhomogeneity, surface defects), 
non-ideal shear stress conditions and non-ideal contact between clamp 
and sample (risk of slippage). In a strain-controlled test, the actual strain 
of the material may be smaller than the assumed strain due to possible 
slippage. Therefore, the instrument assumes a larger strain for a given 

stress, thus the measured modulus is smaller than the actual modulus. 
The scattering around δmax is due to the α-relaxation process, which is 
associated with glass transition, and which is a frequency-dependent 
phenomenon [45], therefore as the frequency increases, the α-relaxa-
tion peak shifts to higher temperatures and higher peak values. 

The master curves are generated with the use of TTS (see Supple-
mentary material S2), which can be done if the vGP plot is continuous. 
To create a continuous vGP curve, we shifted the curves to the curve that 
contains δmin. The abscissa of the δmin point can be considered the plateau 
modulus (G0N), which is a characteristic parameter [46]. However, two 
different δmin values were obtained from the two different tests (Table 1). 
The difference between the ordinate values of δmin is less than 1 %, while 
the difference between the abscissa values is 75 %. Since the shape of the 
curve matches the shape of a typical vGP curve of an amorphous ther-
moplastic polymer and the difference between the ordinate values of δmin 
is minimal, it can be concluded that the phase shift values are adequate, 
but modulus correction is needed. 

Based on the literature, PS materials have a plateau modulus of 
around 2 ⋅ 105 Pa [47]. The 1.5 ⋅ 105 Pa, obtained from torsion mode 
tests, is close to this value, but to verify the accuracy, we carried out 
further analysis. Based on the empirical relationship found by Trinkle 
and Friedrich [48] we estimated the weight average molecular weight 
(Mw) by Eq. (12) using ρ = 1050 kg/m3 and A = 1 (Table 1): 

Mw = Me⋅10
1.91−log δmin

0.61 = A
ρRT

G0
N

⋅10
1.91−log δmin

0.61 , (12) 

Fig. 5. The master curve generation method: unadjusted (a) and adjusted (b) van Gurp-Palmen diagram plot of the curves measured at different temperatures. The 
legends indicate the test temperature. S stands for shear tests using DMA and the T stands for torsion mode test using the oscillatory shear rheometer. 

Table 1 
Parameters of the two different δmin values and calculated molecular weights.   

Measured data Calculated values 
T (K) G0N (Pa) 

(abscissa) 
δ (◦) 
(ordinate) 

Me 
(kg/ 
mol) 

Mw (kg/ 
mol) 

DMA 423.15 82,219 21.86 44.9 386.9 
Oscillatory shear 

rheometer 
433.15 143,835 21.57 26.3 231.3  
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where Me (kg/mol) is the entanglement molecular weight. Me is a 
phenomenological parameter, which cannot be measured, only inferred 
[49]. A is a molecular model–dependent constant (Trinkle and Friedrich 
used A = 1 A = 1 in their calculations), ρ (kg/m3) is the density of the 
polymer at T (K), which is the absolute temperature at which the G0N was 

measured, R = 8.314 J/(mol⋅K)R = 8.314 J/(mol ⋅ K) is the universal 
gas constant. 

The two Mw estimates differ significantly, but the Mw estimated from 
the torsion mode tests differs only 4.5 % from the Mw = 221.3 kg/mol, 
which was obtained from gel permeation chromatography (GPC). 

Fig. 6. The shear mode (S) part of the generated master curves at Tref = 160 ◦C and the fitted models (continuous lines) for the phase angle (a) and the complex 
modulus (b), and the relative standard deviations (c). Relative standard deviation was calculated as the ratio of the standard deviation to the mean. 

Fig. 7. Results of the performed master curve generation using 160 ◦C as a reference temperature: a) vGP plot, b) loss factor, c) storage modulus, d) loss modulus, e) 
temperature dependence of the horizontal shift factor, f) temperature dependence of the Poisson’s ratio. The legends indicate loading modes: T stands for torsion 
mode test using the oscillatory shear rheometer, S stands for DMA shear tests and U stands for DMA uniaxial tensile tests. The ranges of applicability are arbitrary and 
apply only to the PS material tested. 
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Therefore, the curve measured in torsion mode containing δmin should be 
chosen for accurate results. Using this curve as the reference, we first 
adjusted the vGP curves measured in shear mode, and then applied a 
modulus shift factor (bT) (Fig. 5/b). This resulted in the continuous vGP 
curve, allowing the master curve to be constructed with appropriate 
horizontal shift factors (aT). Using the method described by Dealy and 
Plazek [50], we carried out manual horizontal shifting until we reached 
a superposition that resulted in a continuous plot. 

3.4. Wide-frequency master curves 

To investigate the influence of specimen thickness on the shear test 
results, we performed this method on 1-, 2-, 3- and 4-mm thick sheets. 
Based on the finite element analysis results regarding thickness (Section 
3.2.), this falls into η = 0.1− 0.4, therefore we used the formula for thin 
specimens (Eq. (6)). The measured results were corrected with the ethin 
relative error obtained from the finite element analysis (Section 3.2) and 
the effect of the Poisson’s ratio was also taken into account. 

To test the consistency of the results obtained from tests of specimens 
of different thicknesses we fitted sigmoidal models to the shear mode (S) 
part of the generated |G∗(f)| and δ(f) master curves based on the study of 
Liu and Luo [51]. The shear mode (S) part of the master curves and the 
fitted models are shown in Fig. 6/a-b and the model parameters are 
given in Supplementary material Section S5. Based on these models, we 
determined the relative standard deviation along the whole frequency 
range (Fig. 6/c). We defined 105 Hz (log(aTf) = 5 Hz) as an upper limit 
of the application range of the shear mode tests, because at this point the 
relative standard deviation for δ and |G∗| is 15 % and 8 %, respectively. 

After defining these limits, the master curves were drawn. The results 
of the master curve construction performed are shown in Fig. 7. In 
Fig. 7/a-d, the range of applicability of each test method is indicated 
with different colours. Note that these ranges are based on an arbitrarily 
chosen level of deviation, but it clearly defines the different ranges. 

The adjusted vGP plots of these tests are shown in Fig. 7/a. The 
curves are approximately identical up to the δmax (around |G∗| =

107 Pa), but there are significant differences above that modulus. The 
results obtained from the DMA shear sandwich clamp (S) can expand the 
result of rheometry (T) by about 3 decades (from 102 to 105 Hz) based on 
both the storage modulus (Fig. 7/a), loss modulus (Fig. 7/b) and loss 
factor (Fig. 7/c) curves. 

Over 105 Hz (in the vicinity of the local maximum of the loss factor, 
which can be related to the α-relaxation and glass transition) sample 
thickness affects the results of the tests. Fig. 7/b shows that the drastic 
differences occur at about the peak of the loss factor curve. At this point 
the material is in a brittle, glassy state, making DMA clamping unstable 
and possibly slipping. 

We also examined the temperature dependence of the shift factors. 
The WLF equation holds for the whole range (Fig. 7/e), besides, the shift 

factors still fit the WLF model when the shear sandwich clamp is no 
longer applicable. Thus, although this model is often used to verify the 
applicability of the superposition itself, it is not suitable for verifying the 
accuracy of the master curves, because it cannot detect the error in 
modulus. 

Although, the vGP curve is continuous (Fig. 7/a), the WLF depen-
dence of the shift factors holds over the whole measurement range 
(Fig. 7/e), and the master curves look continuous in every case (Fig. 7/b- 
d) the moduli show a significant variation in the glassy region for 
different specimen thicknesses. Therefore, these methods only provide 
information about the goodness of superposition, i.e. the continuity of 
the master curve. The inaccurate modulus values are not always filtered 
by these methods, because these methods verify the curves only quali-
tatively (the shape of the curve), not quantitatively (the exact values). 
Therefore, additional considerations are needed to validate the master 
curve in the glassy region. 

For this reason, we carried out tensile mode tests. For a homoge-
neous, isotropic material, Young’s modulus (determined from a tensile 
test at temperatures below Tg at low test speeds) is equal to the 
frequency-dependent storage modulus at very high frequencies. The 
tensile modulus values obtained from these tests were converted to shear 
modulus by Eq. (5). with the use of the temperature-dependent Poisson’s 
ratios measured with tensile tests (Fig. 7/f). Fig. 7/b-d also shows that 
the uniaxial tension clamp (U) can be used to extend the results even 
further, up to 7 decades (up to about 109 Hz) compared to oscillatory 
shear rheometry, but above this value the results from the uniaxial test 
are quite unreliable. 

The Young’s modulus of the PS used is 3250 MPa at room temper-
ature, which is roughly equivalent to a shear modulus of 1000 MPa (109 

Pa) obtained with the use of the Poisson’s ratio of 0.31 measured at 
30 ◦C (Fig. 7/e). The storage modulus curve obtained with the tension 
clamp is approaching this realistic modulus value. 

It can be concluded that for homogeneous, isotropic materials, this 
method can significantly extend the results obtained with oscillatory 
shear rheometry. Moreover, in the case of isotropic materials, it is 
advisable to use a tension clamp or a shear sandwich clamp with η ≥ 4.6 
to characterise the rheological properties over the widest frequency 
range possible (up to the glassy state). For anisotropic materials (e.g. 

Fig. 8. Rheological plots obtained as a result of the master curve generation method for the tested PS material: frequency-dependent storage (G′) and loss modulus 
(G) curves at Tref = 130 ◦C (a) and the van Gurp-Palmen plot (b). 

Table 2 
The set of rheological parameters determined from the obtained master curve at 
Tref = 130 ◦C.  

Parameter Value determined from master curve 
τd disentanglement or reptation time 318.5 s 
τe Rouse time of entanglement strand 0.025 s 
τ0 Rouse time of Kuhn segment 1.57 ⋅ 10−5 s 
G0 Kuhn modulus 137.7 MPa 
G0

N 
Plateau modulus 0.144 MPa  
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composites), if master curve construction is applicable, this method also 
can be used, but additional mechanical considerations are required 
because the rheological properties of composites are orientation- 
dependent. 

Overall, this method can be used to construct wide frequency range 
master curves that can describe the frequency-dependent behaviour of 
thermorheologically simple materials from the ideally viscous state up 
to the ideally elastic state. 

3.5. Material parameter set directly obtainable from the wide-frequency 
master curves 

The wide frequency curves obtained as a result of the master curve 
generation method for Tref = 130 ◦C are shown in Fig. 8/a. The figure 
shows that there is no region in the plateau zone (between the first and 
second crossover points) where the G′ is truly horizontal. Moreover, the 
G′ curve has several inflexion points. These indicate that the tested PS is 
an entangled, polydisperse polymer [47]. 

The frequency-dependent plot has three clearly identifiable points at 
the intersections of the G′ and the G" curves. Point coordinates can be 
used to determine a number of specific moduli and time parameters that 
can be applied in rheological models, e.g. tube theory-based models. In 
our case, the plateau modulus can only be clearly identified on the van 
Gurp-Palmen plot. Based on these points’ coordinates, the polymer’s 
complex rheological behaviour can be reduced to a data set of a few 
parameters (Table 2), which are suitable for investigating polymer 
melts’ chain dynamics. Our results are in good agreement with the 
findings of Zhong et al. [28] reported on different polystyrene melts and 
solutions. 

These parameters can be used to investigate the chain dynamics of 
polymers, which are of great importance in the simulation of polymer 
processes. Szuchacs et al. [52] used the reptation time (obtained from 
the first crossover point) to predict the bonding strength between the 
two coupled parts during overmoulding, which is a special injection 
moulding process. Robertson et al. [53] used the reptation time and 
Rouse time of chain (calculated using the first and second crossover 
points) to simulate the extrudate swell of polystyrenes. Kearns et al. [54] 
used the Kuhn relaxation time (which can be derived from the third 
crossover point) to develop a new methodology which is suitable to 
describe the effect of flow on the crystallisation kinetics of polyethylene 
after processing has occurred. Overall, the method presented in this 
study is suitable for investigating the frequency-dependent rheological 
behaviour of thermoplastic polymers over a wide range of frequencies, 
which allows us to explore the relationships between flow properties 
and molecular structure and to optimise processing. 

4. Conclusion 

We present a novel method to characterise the shear rheological 
properties of thermorheologically simple, thermoplastic polymers in a 
wide frequency range. The method combines oscillatory shear rheom-
etry and dynamic mechanical analysis (DMA). We investigated the 
mechanical aspects of a shear sandwich clamp using finite element 

analysis. We found that specimen thickness and Poisson’s ratio, which is 
highly temperature-dependent, have significant effects on the modulus 
obtained. These results can be used to better account for the effects of 
geometry in calculations and can facilitate the development of new test 
methods. 

We carried out shear tests on PS material in the melt and the solid 
state using oscillatory shear rheometry with a parallel-plate setup and a 
DMA equipped with a shear sandwich clamp, respectively. Using the 
results from the two different tests, we adjusted the vGP curve to be 
continuous, then master curves were created with the use of time- 
temperature superposition. To validate the results, we also performed 
tests using a DMA tensile clamp. The moduli obtained in tensile mode 
were converted to shear moduli with the measured Poisson’s ratios. We 
found that the DMA shear sandwich clamp can be used to extend the 
master curve obtained with a conventional parallel plate rheometer, by 
3 decades. However, extensibility is limited by the measurement range 
of the clamp setup. The use of a clamp with a thickness/height ratio 
greater than 4.6 can be a solution to this problem, and the rheological 
properties of thermorheologically simple, thermoplastic polymers can 
be characterised over the widest frequency range possible. Rheological 
curves obtained this way can be used to characterise the molecular 
structure and can be implemented in simulations. 

CRediT authorship contribution statement 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.polymer.2024.126742. 

Appendix B. Finite element analysis for the shear sandwich test 

The primary geometric characteristic of the finite element model is the dimensionless value of η = t/c. In our case, w = c. The ultimate goal of the 
analysis was to determine the relationships between the computed and specified G values. Actual geometry has no influence on this ratio, only the 
value of η. Furthermore, the Poisson’s ratio also affects the results. Thus, a particular finite element model can be characterized by two dimensionless 
parameters: ν and η. In our case, w = c = 10 mm, and we vary the value of t. Of the material properties, we set G = 1 GPa and vary the value of the 
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Poisson’s ratio. We incremented the value of η from 0.01 to 5.12 with intervals of 0.01. We discretised the geometry with 3D brick elements. Following 
a mesh independence study, we adopted a meshing strategy where 25 quadratic elements (C3D20) were applied along each edge. In the case of ν =

0.5, we employed hybrid elements (C3D20H) due to volumetric incompressibility. In this scenario, 15625 quadratic elements were used for each 
model, resulting in a total of 68276 nodes. The displacements of the nodes on the lower surface of the test specimen were constrained in all directions, 
while for the nodes on the upper surface, we prescribed the displacement Δu in the shear direction, with all other displacement components set to zero. 
The sum of reaction forces was extracted, which provides FS. From these values, the shear modulus can be calculated. The finite element simulations 
were performed with Abaqus version 2022. 
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