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Abstract: The simultaneous improvement of injection molding process efficiency and product 

quality, as required by Industry 4.0, is a complex, non-trivial task that requires a comprehensive 

approach, which involves a combination of sensoring and information techniques. In this study, we 

investigated the suitability of in-mold pressure sensors to control the injection molding process in 

multi-cavity molds. We have conducted several experiments to show how to optimize the clamping 

force, switchover, or holding time by measuring only pressure in a multi-cavity mold. The results 

show that the pressure curves and the pressure integral are suitable for determining optimal 

clamping force. We also proved that in-channel sensors could be effectively used for a pressure-

controlled SWOP. In the volume-controlled method, only the sensors in the cavity were capable of 

correctly detecting the end of the filling. We proposed a method to optimize the holding phase. In 

this method, we first determined the integration time of the area under the pressure curve and then 

performed a model fit using the relationship between the pressure integral and product mass. The 

saturation curve fitted to the pressure data can easily determine the gate freeze-off time from 

pressure measurements. 
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1. Introduction 

Injection molding is one of the most common processing methods in the plastics 

industry [1]. Although injection molding is considered a mature technology today, 

Industry 4.0 requires continuous improvement in process efficiency and part quality [2]. 

Numerous solutions have been developed to improve the economic feasibility of injection 

molding. One of the most effective solutions is the use of a multi-cavity mold. However, 

quality control for parts produced with a multi-cavity mold is difficult. First, injection 

molding is a complex process, and the quality of the resulting part is affected by numerous 

processing parameters, which can vary widely and are also interrelated. Second, the term 

“product quality” can be understood in various ways. We can distinguish the three most 

common groups of the quality indicators of injection molded products: dimensional and 

weight stability of manufactured parts [3], surface properties (roughness, sink marks, 

weld lines, etc.) [4], and physical properties (mechanical, optical, electrical, etc.) [5]. 

In most cases, the quality of a part is understood as a combination of the above 

criteria. A global trend in manufacturing is to relate the quality of parts with process 

parameters [6]. However, multiple process parameters of injection molding can vary in a 

wide range, and moreover, they interrelate in a complex way and, consequently, 

sometimes have a non-obvious influence on the quality of parts. Therefore, finding a 

relation between product quality and process parameters is a non-trivial task that requires 

a comprehensive approach, which often involves a combination of sensoring and 

Citation: Párizs, R.D.; Török, D.; 

Ageyeva, T.; Kovács, J.G. Multiple 

In-Mold Sensors for Quality and 

Process Control in Injection 

Molding. Sensors 2023, 23, 1735. 

https://doi.org/10.3390/s23031735 

Academic Editors: Peng (Patrick) 

Sun, Yuguang Fu and Jianxiao Mao 

Received: 9 January 2023 

Revised: 27 January 2023 

Accepted: 1 February 2023 

Published: 3 February 2023 

 

Copyright: © 2023 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Sensors 2023, 23, 1735 2 of 18 
 

 

information techniques [6]. Statistical analysis [7,8] and artificial intelligence (AI) [9], 

especially machine learning (ML) [10–12], are used more and more frequently today for 

the process optimization and quality control of industrial manufacturing processes. 

However, these methods are data-driven and often do not consider the physical aspects 

of injection molding. Therefore, it is essential to develop a process optimization and 

control technique that considers the physical processes and transformations that occur 

during injection molding. 

Several studies have proven that weight is a reliable indicator for characterizing and 

controlling the quality of injection molding products and process stability, as variation in 

weight is inversely proportional to part quality [13–16]. The weight of injection-molded 

parts varies due to several reasons. One of the reasons is the differences in the specific 

volume of the melt caused by the inevitable variations of the injection molding process 

[15]. The problem of weight variation gets even worse in the case of a multi-cavity mold. 

First, the dimensions of individual cavities are not identical and can differ within tolerance 

limits. Second, the properties of a polymer melt vary from cavity to cavity due to 

differences in the temperatures induced by shear heating. Next to the wall, the shear rate 

is higher than in the middle, and more heat is generated in the melt. When the melt is 

divided in the runner system, the melt properties can be different in the branches, which 

leads to different part quality in various cavities. This phenomenon is called the imbalance 

of the runner system [17,18]. 

The direct measurements of part weight are usually implemented as a quality control 

procedure. However, it is essential to find a reliable process parameter with which part 

weight can be monitored and predicted online. Changes in polymer properties, 

particularly in the specific volume of the melt, indicate changes in the weight of the parts 

produced. Therefore, monitoring the specific volume of the melt through the measuring 

of pressure and temperature in the cavity of a mold is a reliable tool for predicting weight 

variation. According to Zhou et al. [15], the specific volume of the melt is mainly affected 

by pressure. Therefore, the authors proposed a pressure integral as an effective process 

parameter to predict the weight variations of parts and characterize their quality. The 

most relevant melt pressure data come from the runner and the cavity [19,20]. 

Consequently, monitoring pressure in the cavity and runner system is an excellent 

solution to collect real-time data, control the quality of injection molded parts [19], as well 

as test the injection mold itself [21,22]. Kemmetmuller et al. [23] proposed a method to 

estimate part mass using pressure and temperature sensors installed in the cavity of an S-

shaped test mold. 

A typical injection molding pressure profile includes the filling and the holding stage. 

The time at which the filling stage ends and the holding stage starts is referred to as the 

switchover point (SWOP). The right setting of the SWOP is crucial for the stability of the 

quality of injection-molded parts [24]. The traditional method to determine the SWOP uses 

an offline mass measurement. Such a method is very time-consuming and often leads to 

variations in the quality of the parts produced. Huang [25] proposed a method based on the 

cavity pressure data and a grey prediction model. Chen et al. [26] proposed a simple least-

squares regression-based approach for determining the appropriate switchover point. 

Numerous studies demonstrate the importance of the holding phase for decreasing 

shrinkage and warpage in injection molding parts [27–31]. Increasing holding pressure 

reduces shrinkage [29,30]. The influence of holding pressure on warpage is a controversial 

topic. For example, Li et al. [32] demonstrated that higher holding pressure reduces 

warpage, while Barghash and Alkaabneh [33] stated the opposite. Simulations showed 

that increasing holding time could cause higher warpage. Therefore, it is essential to find 

optimal parameters (mainly holding time and holding pressure) for the holding phase. 

The end of the holding phase is indicated by a gate freeze-off, as after the solidification of 

the gate, no material can enter the mold. Consequently, to obtain the shortest cycle time, 

it is of paramount importance to predict gate freeze-off time as accurately as possible, 

which is not a trivial task. The most common way to determine gate freeze-off time is 
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simply using a long holding time to ensure that the gate freezes [34]. However, we found 

several prediction methods in the literature. For example, Leo and Cuvelliez [35] 

identified a gate freeze-off time from the pressure curves obtained with the pressure 

transducers installed in the cavity. The same authors also mentioned that gate freeze-off 

time can be identified from the packing time–part weight curve. They noted that the 

leveling off of weight curves indicates the freezing of the gates. Pantani et al. [36] and De 

Santis et al. [27] also evaluated gate freeze-off time by monitoring the weight of the parts 

produced with increasing holding time. 

The clamping force is another vital processing parameter that influences the quality 

of a part. Inappropriate settings of the clamping force can result in dimensional 

inaccuracies and even flash in the parts produced. This issue is crucial for low-viscosity 

polymers, as flash defects may occur under even a very small opening of the mold halves 

during the molding cycle. A common practice to overcome this issue is setting the upper 

limit of the clamping force as default. However, such an approach shortens the lifetime of 

both the injection molding machine and the mold and increases energy consumption. 

Therefore, it is essential to determine the optimal clamping force. Traditional methods of 

estimating the optimal clamping force mainly use the total projected area of the cavity, 

sprue, and runner along the clamping direction multiplied by the predicted cavity 

pressure of the molten polymer. However, this prediction is quite rough. Huang et al. [37] 

proposed a method to define an optimal clamping force based on the characteristics 

extracted from the tie bar elongation profile under different clamping force settings and 

regression analysis of these data points. The proposed methodology accurately 

determines an optimal clamping force using just six shots. Yang et al. [38] proposed an 

experimental method to determine the optimal clamping force by measuring the 

difference between the clamping force before mold filling and after cooling. The optimal 

clamping force, according to the authors, corresponds to the moment when the clamping 

force change becomes zero. 

There is a lot of research dedicated to the monitoring of the quality, control, and 

optimization of injection molding processing parameters. However, we have not found a 

methodology that effectively helps predict the quality of the parts produced in a multi-

cavity mold. In this research, we investigated the suitability of pressure sensors for 

controlling the injection molding cycle. We conducted several experiments to optimize the 

clamping force, the SWOP, or holding time by measuring only pressure in a multi-cavity 

mold. We also illustrated the importance of pressure sensors in an experiment where we 

investigated the effect of the injection rate and melt temperature on mold filling imbalance. 

2. Machines, Materials, and Methods 

The samples were molded with an Arburg Allrounder 420 C 1000-290 (Arburg 

Gmbh+Co, Loßburg, Germany) injection molding machine from acrylonitrile butadiene 

styrene (ABS), named Terluran GP-35 (INEOS Styrolution, Manchester, UK). Table 1 

shows the main process parameters (recommended by the manufacturer) and the 

mechanical properties of this material. We used a 16-cavity mold with 34 built-in pressure 

sensors (Figure 1). The pressure sensors were PC 15-1-AA indirect piezoelectric sensors 

from Cavity Eye (Cavity Eye Ltd., Kecskemét, Hungary), installed behind the ejector pins. 

Product weight from the first, third, and fifth experiments was measured with an Ohaus 

Explorer analytical balance (OHAUS Europe Gmbh, Uster, Switzerland). We performed 

five experiments to demonstrate the suitability of pressure sensors in controlling multi-

cavity molds and to illustrate filling imbalance. The settings for each injection molding 

experiment are summarized in Tables 2 and 3. Table 2 shows the fixed parameter set, 

while Table 3 contains the variable parameters and their values. The mathematical 

evaluation and statistical analysis were performed with the Matlab R2021 (The 

MathWorks Inc., Natick, MA, USA) software package. 
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Figure 1. A multi-cavity mold and locations of pressure sensor locations. 

Table 1. Recommended processing parameters by the manufacturer (Terluran GP-35 ABS) and the 

mechanical properties of the material. 

Processing Parameter Values 

Drying temperature and time 80 °C for 4 h 

Recommended melt temperature range 220–280 °C 

Recommended mold temperature range 30–60 °C 

Mechanical Properties Values 

Tensile stress at yield at 23 °C 44 MPa 

Tensile strain at yield at 23 °C 2.4% 

Charpy notched impact strength at 23 °C 19 kJ/m2 

Table 2. Injection molding parameters—fixed parameter set. 

 Values 

Process parameter Exp. 01 Exp. 02 Exp. 03 Exp. 04 Exp. 05 

Clamping force, kN - 700 700 700 700 

Injection rate, cm3/s 50 50 50 - 50 

Switchover control Volume Pressure Volume Volume Volume 

Switchover point, cm3 7 - - 6 7 

Screw rotation speed, 

m/min 
15 15 15 15 15 

Back pressure, bar 40 40 40 40 40 

Decompression, cm3 5 5 5 5 5 

Dose volume, cm3 26 26 26 26 26 

Holding pressure, bar 600 0 0 600 600 

Holding time, s 2 0 0 2 - 

Cooling time, s 15 18 18 15 18 

Melt temperature, °C 225 225 225 - 225 

Mold temperature, °C 40 40 40 40 40 
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Table 3. Injection molding parameters—variable parameter set. 

Experiment Number Changed Setting Setting Levels 

01—clamping force Clamping force, kN 
300/325/350/400/500/600/700/800/90

0/1000  

02—pressure controlled 

SWOP 

Switchover pressure limit 

on sensors, bar 
50/100/125/150 

03—hybrid SWOP Switch over volume, cm3 9.0/8.0/7.0/6.8/6.6/6.4/6.2 

04—imbalance 
Melt temperature, °C 215/225/235 

injection rate, cm3/s 10/20/35/50/65/80/110 

05—gate freeze-off Holding time, s 
0.00/0.25/0.50/0.75/1.00/1.25/1.50/ 

1.75/2.00/2.25/2.50/2.75/3.00 

In the first experiment (01—clamping force), our goal was to optimize the clamping 

force based on mass and pressure measurements. For this experiment, we produced 

specimens with ten different clamping forces. For each setting, five cycles were sampled, 

where the mass of the products and the pressure in the mold were measured. 

In the second (02—pressure-controlled SWOP), third (03—hybrid SWOP), and fourth 

(04—filling imbalance) experiments, we investigated the filling stage. The second 

experiment showed the advantages and disadvantages of switching based on in-mold 

pressure. In this experiment, the end of the filling stage was controlled using in-mold 

pressure. We used three different sensor locations and four different pressure thresholds 

to investigate the effect of these parameters on the SWOP. During this experiment, we did 

not use holding pressure so that we could investigate the pressure overflow in the mold. 

In this experiment, we sampled 15 pressure curves for each setting to make sure the 

switchover was stable. 

The third experiment was a hybrid method of switching from the filling to the 

holding stage because the settings were changed manually. However, we compared the 

measured pressures with the measured mass to show the advantages of online 

measurement. Here, we injection-molded products with seven different switchover 

volumes. Three cycles were sampled, where the mass of the products (usually short shots) 

and the pressure in the mold were measured. 

The fourth experiment measured mold filling imbalance and showed the dependence 

of this imbalance on melt temperature and injection rate. We used three different melt 

temperatures and seven injection velocities for this experiment and sampled in-mold 

pressure in five cycles for each setting. 

Finally, we conducted the fifth experiment (05—gate freeze-off) to investigate the 

gate freeze-off time based on pressure measurement during the holding phase. Here, we 

injection-molded products with 13 different holding times. We sampled five cycles, where 

the mass of the products and the pressure in the mold were measured. 

3. Results 

3.1. Controlling the Clamping Stage 

The clamping force should be high enough to prevent mold flash. However, if the 

clamping force is excessive, it can ruin the airflow in the cavity and lead to burn marks on 

the product. Moreover, too great a clamping force increases energy consumption 

unnecessarily. In Figure 2, we showed that maximum cavity pressure is significantly 

lower when we use a lower clamping force. Moreover, cavity pressure at a low clamping 

force decreases much more slowly than at a high clamping force. This is because the 

injected melt can open the mold due to insufficient clamping force, forming a flash on the 

edge of the product. When the machine uses the predefined force to keep the tool closed 

continuously during the cycle, it pushes the product to the sensor, which leads to a higher 

pressure and slower pressure decrease. 
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Figure 2. In-mold pressure change as a function of time at different clamping forces (cavity 04, post-

gate sensor). 

When the clamping force is increased, melt pressure cannot open the mold. 

Consequently, less melt gets in the cavity, and it compresses better. This can be tracked 

on the pressure curves, too. As the clamping force is increased, the difference between the 

in-mold pressure curves becomes smaller and smaller until it disappears. However, from 

the computational point of view, it is preferable to store only selected characteristic 

features of the pressure curve rather than the whole curve so that we can observe the 

difference between each set of parameters. Figure 3a shows the pressure integral of the 

post-gate sensors for the inner and outer cavities of the mold. The trend of part weight 

change (Figure 3b) is very similar to the trend of the pressure integral. For each cavity, the 

correlation coefficient is greater than 0.96 with a p-value smaller than 10−8, which 

corresponds to a strong correlation between the two values and a low probability of no 

significant linear correlation between the two values. 

 

 

(a) (b) 

Figure 3. The change of the pressure integral (a) and part weight (b) of the inner (07 and 08) and 

outer (01 and 02) cavities due to a change in the clamping force. 

In order to make the trends quantifiably comparable, we carried out a one-way 

analysis of variance (one-way ANOVA). With this test, we check whether there is a 

significant difference between the resulting pressure integrals or product masses when 

the clamping force is varied. However, a one-way ANOVA alone cannot make pairwise 

comparisons, so it can only show if there is at least one outlier at different clamping forces. 

However, post hoc testing allows us to compare each clamping force pair by pair, and we 

can see if there is a significant difference between them. Therefore, for the ANOVA results, 
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we performed a Tukey–Kramer post hoc test, which performs the pairwise comparison 

for each pair of clamping force settings. This test reduces the type I error rate by adjusting 

the calculated p-values. If the adjusted p-value is greater than 0.05 (significance level), then 

there is no significant difference between the compared values. 

In Figure 4, we collected the adjusted p-values for each pair of clamping forces with 

the metrics mentioned earlier (part weight and pressure integral). Therefore, Figure 4 is 

effectively two parts separated by the black diagonal. As shown in Figure 4, if one of the 

compared clamping force pairs is small, the p-value is almost zero (deep blue squares), 

i.e., the difference between the masses/pressure integrals of the two products produced at 

different clamping forces is significant. On the other hand, when the compared closing 

forces are large, the p-values are large, so there is no significant difference between the 

measured masses or pressure integrals. As the two parts on either side of the diagonal are 

similar, we can say that both metrics can be used in a similar way to set the clamping force, 

although pressure measurement takes considerably less time for a multi-cavity mold. 

 

Figure 4. The adjusted p-values (from the Tukey–Kramer post hoc test) for each clamping force pair 

for the pressure integrals (below the diagonal) and part weights values (above the diagonal). 

3.2. Controlling the Filling Phase 

The second and third experiments compared different control methods for the end of 

the filling stage. For the multi-cavity mold used, we investigated which sensors in the mold 

were suitable for controlling the switching based on the length of the runner from the sprue. 

During the filling stage, the melt is injected from the barrel through the runner 

system into the cavity with a relatively high velocity. Melt pressure decreases during the 

path of the melt to the cavity. This raises the question: “Which pressure sensor location 

and which pressure threshold should be set as a switching control in the mold?” 

Theoretically, a small pressure signal from a sensor installed at the end of the cavity is 

enough to switch between the holding and filling stages. However, feedback from a sensor 

has a delay, which can cause higher in-mold pressure than necessary. We examined three 

different locations of pressure sensors along the melt path to determine the effect of this 

delay (see Figure 5). We used pressure sensors at a tertiary runner, after the gate of a cavity 

(post-gate sensor), and at the end of a cavity. We set the switchover pressure threshold to 

50 bar. Still, due to the sampling rate of the sensor (100 Hz), the feedback signal was sent 

much later, especially for sensors towards the end of the flow path, and the machine also 

had a delay time. The solid lines show the pressure curves until the switchover, and the 

dashed lines show the in-mold pressure afterward. It is clear that even though there was 

no holding pressure, in-mold pressure increased significantly after the switchover if 

sensors inside the cavity controlled the machine. On the other hand, the sensor in the 

runner was able to take the pressure off. However, the melt did not reach the sensor at the 

end of the cavity, which meant an incomplete product. 
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Figure 5. The effect of sensor location on switchover pressure (sensors from the flow path to cavity 02). 

Generally, the desired transition between the filling and holding stage is such that 

there is no sudden significant change in pressure due to the switchover point. This means 

that after the cavity is filled, there is a short time when the melt is compressed during 

filling. After that, when holding pressure is applied, the additional melt is pushed into the 

cavity to decrease the shrinkage of the product. If the pressure drops during this 

transition, it means that too much pressure is applied during filling or the holding 

pressure is insufficient. In the former case, the mold may open (if the clamping force is 

not high enough), and a flash can appear at the side of the product. If injection pressure is 

too low, the product will contain sink marks due to the lack of material in the thicker parts 

of the product. To get a smooth switchover on the pressure curve, we examined the effect 

of switchover pressure on the data obtained with the sensor installed at the tertiary 

runner. Figure 6 shows how in-mold pressure changes when the pressure trigger is 50 bar, 

100 bar, 125 bar, or 150 bar. With a 50-bar trigger level, the melt did not reach the cavity; 

in the case of 100 bar, the melt reached the end of the cavity sensor. However, the pressure 

in the cavity was below 70 bar, which means the cavity was only filled, but there was no 

compression during the filling stage. In the case of a 125-bar or 150-bar trigger, we found 

that in-mold pressure increased significantly after the SWOP, even though we did not 

apply holding pressure. This phenomenon is most probably caused by the accumulated 

melt in the runner system. When the melt reaches the sensor, the pressure increases 

slightly until the melt comes to the small-diameter gates, where higher pressure is needed 

to get the melt into the cavity. After the cavities are filled, the slope of the pressure curve 

changes dramatically because of the compression of the melt. Melt pressure reaches the 

switchover limit, but due to the delay in control, the screw moves forward, pushing the 

melt into the mold. The main goal is to find the processing window to control the filling 

stage through pressure sensors. The further we place the sensor from the end of the cavity, 

the less accurately we can determine the end of the filling stage. 
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Figure 6. The effect of the switchover pressure threshold on in-mold pressure, measured with a 

sensor in a runner (tertiary channel sensor to cavity 02). 

3.3. Manual Switchover Method with Pressure Measurement 

We used a different approach for the third experiment to determine the SWOP. Here 

we defined the SWOP with the melt volume limit and performed a switchover volume 

sweep. The dose volume prepared for the next injection cycle was not changed, only the 

switchover volume. Therefore, the injected melt volume changed. During injection 

molding, the in-mold pressure was measured, and three samples were taken from each 

cavity at each setting. We did not use holding in this test, so the weight of the parts shows 

how each cavity was filled based on how much polymer melt was injected into the mold. 

In Figure 7, the change in part weight can be seen due to the change in the injected melt 

volume. Mass measurement is a traditional method to define the switchover volume. This 

method is robust but relatively time-consuming, especially in the case of multi-cavity 

molds. Therefore, in this study, we developed another prediction method, which is based 

on cavity pressure data. To verify the pressure-based method, we compared the obtained 

results with those delivered by the mass measurement method. Therefore, we 

investigated the variation of the maximum pressure at different sensors along the flow 

path as a function of the amount of melt injected in the mold (Figure 8). 

 

Figure 7. Change of part weight due to the injected melt volume. 
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(a) (b) 

  
(c) (d) 

Figure 8. Maximum pressure for each cavity based on: (a) tertiary channel sensors; (b) pre-gate 

sensors; (c) post-gate sensors; (d) end-of-cavity sensors. 

The mass measurement results (Figure 7) indicate that there is a significant difference 

in the filling between cavities 1 and 2. Subsequent gate measurements show that the gate 

at cavity 2 is about one and a half times the size of the other gates. This means a much 

lower resistance during filling, which results in a significantly greater product weight. 

From the mass measurement results (Figure 7), it is visible that when 22 cm3 of melt was 

injected, cavity 08 was already filled, while cavity 07 was almost filled. The sensors at 

tertiary channels cannot show the difference between the cavities connected to that 

channel (Figure 8a), which is a great disadvantage. The sensors in front of the gate can 

separate the individual cavities due to their position, but they cannot show the filling of 

the cavities either (Figure 8b). In contrast, the pressure data obtained from the sensors in 

the cavities clearly show that the melt flows differently in the individual cavities. The 

maximum pressure measured at the end of the cavity sensor shows this filling 

phenomenon the best because the maximum pressure in cavity 08 is already greater than 

zero when the volume of the injected melt is 22 cm3 (Figure 8d). The results of the post-

gate sensors show a similar trend (Figure 8c). Figure 8c,d show that cavities 02, 05, and 06 

are filled next due to the almost 100 bar maximum pressure jump. Cavities 01, 03, and 04 

were the last to be filled when 24.5 cm3 of melt was injected into the mold. The sensors in 

the channel can show the filling of these last cavities as the slope of the maximum pressure 

function changes significantly from here. However, the in-cavity sensors demonstrate 

higher accuracy in this case. Therefore, in-cavity sensors are much more recommended 

for this method, while their use was less promising in the previous method. 

3.4. Mold Filling Imbalance Detection with a Pressure Sensor 

As was demonstrated before, there is a clear mold-filling imbalance (Figures 7 and 

8). However, the methods shown before the results highlighted a way of measuring the 

dependence of mold filling imbalance during filling on melt temperature and injection 
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rate. Therefore, we experimented with three melt temperatures and seven injection 

velocities to see if the effect of these factors is visible based on pressure measurement. The 

end-of-cavity sensors were used to measure mold filling imbalance, as the previous 

experiment showed that these were particularly suitable for monitoring the filling phase. 

The measurement procedure was as follows: from the pressure curve, we defined the time 

of arrival of the melt to each cavity by checking when the pressure exceeded 5 bar. Then 

the ratio of the longest and shortest melt arrival times was calculated for each injection 

rate–melt temperature combination for each side of the mold. The shortest arrival times 

were found for the inner cavities (cavities 07 and 08), while the longest times were for 

cavities 03 or 04 for both low and high speeds (Figure 9). This ratio was used to analyze 

the filling imbalance. 

𝑡𝑟𝑎𝑡𝑖𝑜 =
max(𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙)

min(𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙)
 (1) 

where 𝑡𝑟𝑎𝑡𝑖𝑜 is the ratio of the longest and shortest melt arriving time on the specified 

side of the mold, 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙  is the melt arrival time for each cavity for the specified side of 

the mold. 

 

Figure 9. Melt arrival times to the end-of-cavity sensors: (a) vinj = 10 cm3/s and for (b) vinj =110 cm3/s 

(Tmelt = 215 °C). 

We analyzed whether melt temperature and injection rate significantly affected the 

filling imbalance (Tables A1 and A2 in Appendix A). The analysis clearly showed (with a 

significance level of 0.05) that both factors strongly affected the imbalance metric, and 

there was considerable interaction between the two factors (p-values were much smaller 

than 0.05). This means that the effect of the injection rate highly depends on the level of 

melt temperature (see Figure 10). As the injection rate increases, the ratio deviates further 

from the optimum value of 1, but this effect can be reduced by increasing melt 

temperature. 
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Figure 10. Effect of melt temperature and injection rate on the ratio of the longest and shortest melt 

arrival times: (a) cavity 03–07; (b) cavity 04–08. 

3.5. Controlling the Holding Phase 

The holding phase aims to reduce part shrinkage caused by the change in specific 

volume during the cooling phase. During the holding phase, the machine injects more 

material into the mold, typically with pressure control. After the filling phase, only a small 

amount of melt is needed to compensate for the change in specific volume. One of the 

crucial parameters is holding time, which should be equal to gate freeze-off time in an 

optimal case. If the holding time is shorter than the gate freeze-off time, there is 

insufficient compensation, which means higher shrinkage. However, if the holding phase 

continues after the gate is frozen, the longer cycle time causes a loss of income, and we 

put more material into the runner system, which can increase the amount of waste. A well-

established method to determine gate freeze-off time is to measure the weight of parts 

molded with different holding times. However, this method could take a long time, 

especially in the case of multi-cavity molds. Automation with robots could reduce this 

time, but this would be an expensive solution. Therefore, a process may be needed to 

determine gate freeze-off time. 

In our last experiment, we injection-molded parts in the mold with different holding 

times in the range of 0–3 s with a step of 0.25 s. In each setting, we collected five samples 

and measured the in-mold pressure in different positions during the flow path. Figure 11 

shows how the pressure curve changes as a function of the holding time in two different 

locations (one before the gate in the runner and one after the gate in the cavity). It is clear 

that if the holding time increases, the area under the pressure curve also increases in the 

runner. However, the pressure approaches a limit in the cavity, and the area does not 

increase after this limit. After the gate freezes, the pressure cannot be maintained because 

the frozen gate closes the cavity. Therefore, measuring the cavity pressure integral can be 

an excellent way to detect gate freeze-off time because this measurement can be done 

online during production. 

 
(a) 
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(b) 

Figure 11. In-mold pressure curves as a function of time and holding time measured with a: (a) pre-

gate sensor; (b) post-gate sensor (cavity 01). 

To verify this hypothesis, we measured the mass of the products and compared them 

with the results of the calculation of the pressure integral. However, the time of pressure 

measurement depends on cycle time and the change in pressure in the cavity. If the 

sampling time is too short, meaningful information about the decay of the pressure curve 

may be lost. If the sampling time is too long, the cycle time may be exceeded. Therefore, 

we examined the effect of the integration interval on the relation between mass 

measurement and pressure integrals. We calculated the integral with different interval 

lengths. The shortest interval was 0.2 s, the longest interval was 10 s from the start of 

measurement, and the step size was 0.2 s. We calculated the Pearson correlation coefficient 

for each pressure integral–weight relationship in the case of different intervals and the 

corresponding p-value for each cavity. Figure 12 shows the estimated coefficients and p-

values as a function of the end of the integration time. The trend of the values was very 

similar for all cavities. These results show that the correlation coefficient clearly indicates 

a strong positive correlation between the pressure integral and part weight. We showed 

the 95% confidence interval for each correlation coefficient and marked the adjusted p-

values for each correlation coefficient. The adjusted p-values were needed because the 

experiment involved multiple comparisons, which increased the likelihood of the type I 

error rate. Therefore, the Bonferroni-Holm correction was applied to the p-values from the 

correlation. The size of the confidence intervals and the p-values indicate that the assumed 

relationship is significant at the integration time of 3 s. 

 

Figure 12. The changing of the correlation coefficients and their 95% confidence interval between 

the pressure integral and mass based on integration time and the adjusted probabilities for each 

correlation (cavity 08). 

Therefore, the integral was calculated from the start of the measurement until the 

third second. We determined the Pearson correlation coefficient between the mass of each 

sample in the first eight cavities and the pressure integral measured from these cavities. 

The correlation coefficient is R = 0.973 with a significance level of α = 0.05 (Figure 13). 
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Figure 13. Relationship between the pressure integral and sample mass (R = 0.973 with a significance 

level of 0.05). 

Figure 14 shows the change in product mass and the pressure integral as a function 

of holding time. We used the following saturation curve function to estimate the change 

of the pressure integral or mass: 

𝑦(𝑡ℎ𝑜𝑙𝑑) = 𝑦0 + (𝑦∞ − 𝑦0) ∙ (1 − 𝑒−𝜏∙𝑡ℎ𝑜𝑙𝑑) (2) 

where 𝑦(𝑡ℎ𝑜𝑙𝑑) is the mass or the pressure integral as a function of holding time, 𝑦0 is 

the mass or pressure integral without a holding pressure, 𝑦∞  is the mass or pressure 

integral after the gate is frozen, 𝜏 is the time parameter, and 𝑡ℎ𝑜𝑙𝑑 is the holding time. 

The component (𝑦∞-𝑦0) can show how much compensation the holding phase can make 

until the gate freezes. On the other hand, 𝜏 defines the steepness of the function, which 

shows how quickly the gate freezes. After we determined the constants from the fitting, 

we set a threshold, which we used to calculate the gate freeze-off time (Figure 15). If the 

pressure integral function or mass function crossed this threshold, we could assume that 

the gate is frozen because of the relatively small change in the curves. 

 

Figure 14. Mass and pressure integral as a function of holding time (cavity no. 1, post-gate sensor, 

phold = 600 bar, integration time 3 s). 
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Figure 15. Predicting gate freeze-off time from the saturation curve from the measurement of mass 

and pressure. 

This method can accurately predict gate freeze-off time. We examined the gate freeze-

off times, and nearly all cavities froze after approximately 2 s of holding time (Figure 15). 

This moment (gate freeze-off) occurred at the third second of the pressure curve, which 

explains why the p-value of the correlation between the pressure integral and product 

weight was the smallest when integration was performed until the third second (Figures 

11 and 12). 

4. Conclusions 

1. We investigated several methods of using pressure sensors to control multi-cavity 

molds. One such method was to optimize the clamping force. The results show that 

the pressure curves and the pressure integral are suitable for determining the optimal 

clamping force. This method can save time and energy, as we can use the information 

from the pressure curves to find the optimal clamping force faster, and its value may 

be lower than the maximum clamping force of the machine. 

2. Subsequently, we compared two methods for controlling filling as a function of in-

mold sensor location. The results showed that the use of in-channel sensors is 

recommended for a pressure-controlled SWOP. In contrast, in the volume-controlled 

hybrid method, the sensors in the cavity were the only sensors capable of correctly 

detecting the end of filling. 

3. The dependence of mold filling imbalance on injection rate and melt temperature was 

examined with in-mold sensors. Our results show that the imbalance increases with 

the injection rate, but this effect can be reduced by increasing the temperature of the 

melt. 

4. In the last experiment, we optimized the holding phase. We first determined the 

integration time of the area under the pressure curve and then performed a model fit 

using the relationship between the pressure integral and product mass. The 

saturation curve fitted to the pressure data can easily determine gate freeze-off time 

from pressure measurements. There was little difference between the gate freeze-off 

times calculated from mass measurements and pressure measurements. 
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Appendix A 

Table A1. Analysis of the main effects and interactions for the left side of the mold. 

Source of  

Variation 
DoF Sum of Squares Mean Square F-Statistic p-Value 

Melt temperature 

(Tm) 
2 0.0269 0.0135 203.4625 8.54 × 10−36 

Injection velocity 

(vinj) 
1 0.0100 0.0100 151.9124 1.04 × 10−21 

Tm x vinj 2 0.0014 0.0007 10.8474 5.50 × 10−5 

Error 99 0.0065 0.0001     

Total 104         

Table A2. Analysis of the main effects and interactions for the right side of the mold. 

Source of Variation DoF Sum of Squares Mean Square F-Statistic p-Value 

Melt temperature 

(Tm) 
2 0.0256 0.0128 146.7638 2.44 × 10−30 

Injection velocity 

(vinj) 
1 0.0109 0.0109 125.0406 2.95 × 10−19 

Tm x vinj 2 0.0018 0.0009 10.4503 7.63 × 10−5 

Error 99 0.0086 0.0001     

Total 104         
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