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A B S T R A C T

In this study, we developed electrically conductive nano- and hybrid composites with a poly(lactic acid) (PLA)
matrix for different melt processing technologies. We used short carbon fiber and multi-walled carbon nanotube
reinforcements to enhance electric conductivity. We prepared the composite compounds with twin-screw
extrusion; then the compounds were processed via injection molding and fused filament fabrication. We
showed that electric conductivity only slightly increased by when only carbon nanotubes were added to the PLA
matrix. However, when carbon fibers were added to the nanocomposites, the higher shear during melt mixing
helped the uniform dispersion of the carbon nanotubes, resulting in a highly conductive reinforcement network in
the composite. On the other hand, the hybrid reinforcement resulted in higher viscosity, making melt processing
difficult and the material also became more brittle. Therefore, we added an oligomeric lactic acid plasticizer to the
hybrid composites, and produced specimens by injection molding and 3D printing. The tensile strength increased
by 140% and the elongation at break increased by 56%, and at the same time, the electrical conductivity of the
material remained at a high level.
1. Introduction

The interest in electrically conductive polymers has constantly been
growing in recent decades. Dynamically developing sectors such as
sensor manufacturing, biomedical applications, and the electronic in-
dustry sees their potential, which justifies further research of these ma-
terials. Although conductive polymers, such as polyacetylene,
polypyrrole, and poly(3,4-ethylene dioxythiophene) have long been
known, it is difficult to process them with mass-producing technologies.
This justifies the production of conductive polymer composites (CPCs)
that can be processed with conventional technologies like melt com-
pounding and injection molding [1, 2, 3]. In this case, conductive par-
ticles are dispersed in the insulating polymer matrix. These can form
electrically conductive paths, called percolations, thereby increasing the
electrical conductivity of the composite [4].

In addition to the electrically conductive polymer composites, there is
also a growing interest in biopolymers that can be produced from
renewable resources or are biodegradable. These offer a possible alter-
native to conventional petroleum-based polymers [5, 6, 7]. One of the
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most popular biopolymers is polylactic acid (PLA), whose monomer can
be produced by the fermentation of renewable sources, such as cellulose
or other materials containing polysaccharide [8]. Due to its biocompat-
ibility, there is a growing interest in its medical applications: in medical
implants, tissue engineering, orthopedic devices, etc. [9]. PLA has poor
electrical conductivity (3.32 ⋅ 10�12 S/cm [8]), similarly to other unfilled
polymers, therefore, the use of conductive fillers and reinforcements is
intensively researched.

Due to their excellent electrical conductivity (105 S/cm [9]), carbon
nanotubes (CNTs) are recently used as conductive fillers. Furthermore,
due to their excellent mechanical, physical, and chemical properties, CNT
is one of the most researched nanoparticles in recent decades. However,
carbon nanotubes should be uniformly dispersed in thematrix to improve
conductivity considerably. If they are not dispersed properly, the incre-
ment in conductivity is minimal [10]. For example, Wang et al. [11] used
poly(ethylene oxide) as a binder for CNTs which helped them to prepare
well-dispersed PLA/CNT composites. They showed that the electrical
conductivity of the composites improved by two orders of magnitude in
case of better dispersion. The importance of dispersion for electrical
st 2022
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1. Reinforcement content of the composite samples.

Name PLA (wt%) CNT (wt%) CF (wt%) OLA2 (wt%)

PLA 100.00 0.00 0.00 0.00

PLAþ0.25CNT 99.75 0.25 0.00 0.00

PLAþ0.5CNT 99.50 0.50 0.00 0.00

PLAþ0.75CNT 99.25 0.75 0.00 0.00

PLAþ1CNT 99.00 1.00 0.00 0.00

PLAþ30CF 70.00 0.00 30.00 0.00

PLAþ30CFþ0.25CNT 69.75 0.25 30.00 0.00

PLAþ30CFþ0.5CNT 69.50 0.50 30.00 0.00

PLAþ30CFþ0.75CNT 69.25 0.75 30.00 0.00

PLAþ30CFþ1CNT 69.00 1.00 30.00 0.00

PLAþ30CFþ0.75CNTþ10OLA 59.00 1.00 30.00 10.00
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conductivity is also emphasized in the work of Wang et al. [12], in which
an outstanding, 72.2 S/m electrical conductivity have been achieved for
PLA/CNT composites.

We investigated the effect of nanoparticles, such as carbon black (CB)
and multi-walled carbon nanotubes (MWCNTs) in the PLA matrix. They
increased the conductivity of the composites in different degrees (11.3 S/
cm for MWCNT/PLA and 0.1 S/cm for CB/PLA prepared by material
extrusion-based additive manufacturing [13], and 0.125 S/cm for
CB/PLA prepared by hot pressing [14]). Graphene nanoplatelets have also
been used for PLA matrix in literature with varying results (6.7 ⋅ 10�5

S/cm [11] to 2.42 S/cm [15].
When the nanoparticles are dispersed well, they also increase tensile

strength and modulus. However, elongation decreases as the amount of
nanoparticles increases, which is not desirable for the inherently brittle
PLA [16].

Based on our previous studies, the dispersion of CNT can be signifi-
cantly improved with the addition of a micro-sized conductive filler, e.g.,
carbon fiber (CF), during compounding [17, 18, 19]. In this case, other
shear forces are formed in the melt due to the presence of CF, which help
Figure 1. Preparation of the hybrid electrically conduct

Figure 2. Production of tensile samples by injec
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to disperse the fillers uniformly. In addition to the fact that nanoscale
percolations of properly distributed CNTs already significantly increase
electrical conductivity, additional microscale percolations are formed
through the carbon fibers. Also, there is a synergistic effect between
nanoscale percolations produced by CNTs and microscale percolations
produced by carbon fibers. Since microscale conductive paths form
connections between nanoscale percolations, nanoscale paths form con-
nections between the micro-sized carbon fibers, thereby increasing
electrical conductivity [20, 21].

The high viscosity requires higher injection pressure and may lead to
a lower degree of mold filling in injection molding or may lead to melt
flow instability in the case of extrusion [22]. As there is a growing de-
mand for customizable products, fused filament fabrication has come to
the fore, where melt viscosity has an evenmore important role, due to the
very narrow printing nozzle [23]. A commonly encountered defect of
composite 3D printing is the clogging of the nozzle, which is often
experienced above 20 wt% fiber content [24, 25, 26]. Therefore, the melt
viscosity of hybrid composites should be kept at a low level so that the
material is melt processable.
ive composites and plasticization for processability.

tion molding and fused filament fabrication.



Figure 3. Melt flow index (MFI) of the nano- and the hybrid composites.

Figure 4. Electrical conductivity of the nano- and the hybrid composites.

R. Petr�eny et al. Heliyon 8 (2022) e10287
In the past few years, oligomeric lactic acid (OLA) has been found to
be an effective and environmentally-friendly plasticizer and lubricant for
PLA materials. OLA plasticizers help the melt processing of the materials
and increase the toughness and elongation at the break of the brittle PLA
composites [27, 28].
Figure 5. Schematics of the microstructure of the composites an
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In this study, we produced electrically conductive polymer compos-
ites with a biopolymer matrix, using PLA, CF, and CNT. The hybrid
reinforcement has beneficial effects on the dispersion of the nanotubes
and leads to an increase in electric conductivity. However, it makes the
PLA matrix even more brittle and increases melt viscosity, which makes
the melt processing of the material difficult. For this, we use oligomeric
lactic acid as a plasticizer, and as a result, the composite should be well
processable via injection molding and fused filament fabrication. The
goal is to produce an easy-to-process, electrically conductive material for
injection molding and material extrusion-based additive manufacturing
with enhanced toughness.

2. Materials and methods

PLA 4060D amorphous polylactic acid granules manufactured by
NatureWorks LLC were used as a matrix material for the composites. The
multi-wall CNT used as a nanoscale reinforcement is Nanocyl NC7000 by
Nanocyl S. A., with a diameter of 9.5 nm, a length of 1.5 μm, and a
specific surface area of 250–300 m2/g. Panex 35 Chopped Pellet 95 of
Zoltek Zrt. was used as a fibrous reinforcement. As a plasticizer, Con-
densia Glyplast OLA2 was used.

The fibers had a diameter of 8.3 μm, a length of 6mm, and a density of
1.81 g/cm3. It was necessary to dry the PLA granules before processing. A
Faithful WGLL-125 BE drying oven was used to dry the PLA granules for 4
h at 45 �C. The granules and the reinforcing materials were first dry
mixed, then compounded with an LTE 26–44 twin-screw extruder man-
ufactured by Labtech Engineering Co., Ltd. Screw speed was 25 rpm and
zone temperatures were 180 �C, 190 �C, 190 �C, 190 �C, 190 �C, 200 �C,
200 �C, 200 �C, 200 �C, 200 �C, and 190 �C. The composition of the
materials is shown in Table 1.

The fibers formed during the continuous extrusion were passed
through a cooling conveyor belt to an LZ-120/VS type granulator, which
produced 4 mm long granules. Before injection molding, the granules
were dried as described above. Specimens according to the EN ISO 527-2:
1999 standard were injection molded on an Arburg Allrounder Advance
270S 400-170 injection molding machine with zone temperatures of 185
�C, 190 �C, 195 �C, 200 �C, 200 �C, a mold temperature of 25 �C and an
injection pressure of 1500 bar.

After determining the optimal mixture for conductivity, processabil-
ity was improved with an oligomeric lactic acid plasticizer (OLA2). The
PLAþ30CFþ0.75CNT composite was plasticized with 10 wt% OLA2,
based on a previous study [29]. To mix the OLA2 with the composite, we
fed the PLAþ30CFþ0.75CNT material into an LTE 26–44 twin-screw
extruder, and preheated the OLA2 to 80 �C and dosed it with a Labtech
d the forming of conductive paths in the hybrid composites.



Figure 6. a) tensile strength, b) elongation at break, and c) tensile modulus of the nano- and hybrid composites.
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LDF-1.6 liquid dosing system. The zone temperatures in the extruder
were 180 �C, 190 �C, 190 �C, 190 �C, 190 �C, 200 �C, 200 �C, 200 �C, 200
�C, 200 �C, and 190 �C, and screw speed was 10 rpm Figure 1 shows a
schematic summary of the preparation of the composites.

The filament forming during the extrusion had a diameter of 1.65–1.8
mm and was directly applicable for 3D printing. Samples were produced
on a Craftbot þ desktop material extrusion printer with a nozzle tem-
perature of 220 �C, a layer height of 0.4 mm, and an infill rate of 100%.
To investigate the orientation dependence of electrical conductivity and
tensile properties, we manufactured two types of specimens with the
printing orientation parallel to the longitudinal axis (0�) and perpen-
dicular to it (90�). For the injection molding of the composite plasticized
with OLA2, the extruded filament was used after granulating. It was in-
jection molded on an Arburg Allrounder Advance 270S 400-170 injection
molding machine with zone temperatures of 185 �C, 190 �C, 195 �C, 200
�C, 200 �C, amold temperature of 25 �C and an injection pressure of 1500
bar. Figure 2 shows the equipment used and the samples prepared.

The melt flow index (MFI) of the materials was measured on a CEAST
7027.000 capillary plastometer at 200 �C and with a load of 21.6 N. The
granules made from the extruded filaments were used for the
measurements.

A four-pin resistance meter with an Agilent 34970A data logger was
used to measure electrical conductivity. The specific resistance of the
composite specimens was determined using Eqs. (1) and (2).

ρ ¼ π ⋅ c
lnð2Þ ⋅ R ðΩcmÞ (1)

G¼ 1
ρ
ð S
cm

Þ (2)
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where ρ is the resistivity measured, c is the thickness of the sample in cm,
R is the measured resistivity, and G is electrical conductivity.

Tensile tests were carried out on at least five specimens for each
material on a Zwick Z005 universal testing machine (Germany) accord-
ing to EN ISO 527. The tensile moduli were determined with the linear
regression line between the 0.05% and 0.25% displacement values.
Tensile speed was 2 mm/min, and gauge length was 110 mm.

Density was measured with a Sartorius Quintix 125D type semi-
micro scale. At least five samples for each material were tested in
water at 22.6 �C.

For the scanning electron microscope (SEM) images, the samples
were etched in a 5 mol/l NaOH solution for 1 h at 25 �C and then
sputtered with gold. The images were made with a JEOL JSM6380LA
scanning electron microscope.

3. Results and discussion

3.1. Development of electrically conductive hybrid composites

3.1.1. MFI
The melt flow index of the materials has a key role in their process-

ability. Figure 3 shows that adding only nanotubes to the PLA did not
influence its viscosity. However, when 30 wt% carbon fiber was added to
it, increasing nanotube content decreased MFI and increased viscosity. If
the carbon nanotubes are well dispersed in the matrix, more polymer
chains can entangle around them, blocking their movement during melt
processing. However, a large MFI makes melt processing difficult or even
impossible, especially where low viscosity is required (injection molding,
3D printing).



Figure 7. SEM images of a)-c) the injection-molded pure PLA, d)-e) the injection-molded PLAþ0.5CNT nanocomposite, f)-i) the injection-molded PLAþ30CF com-
posite, j)-l) the injection-molded PLAþ30CFþ0.5CNT hybrid composite.
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3.1.2. Electrical conductivity
The results of the electrical conductivity test are illustrated in

Figure 4. The conductivity of the composites reinforced only with CNT
remained approximately unchanged. It is due to the aggregation of CNTs,
which reduces the number of CNTs involved in the formation of
conductive pathways.
5

The conductivity of the hybrid composites reinforced with CNT and
CF was already significantly higher than that of the CNT-only composites,
due to the presence of 30 wt% CF. With the addition of 0.5 and 0.75 wt%
CNT, conductivity increased significantly, reaching twice the conduc-
tivity of the CF-only composite (0.355 S/cm). In addition to the nano-
scale conductive paths formed by the contact of well-dispersed CNTs,



Figure 8. Schematics of the microstructure of the composites and the direction of the measurement of electrical conductivity.

Table 2. Electrical conductivity of the plasticized composite.

Name Processing technology Electrical conductivity
(S/cm)

PLAþ30CFþ0.75CNTþ10OLA Injection molding 0.229

Fused Filament
Fabrication 0�

0.154

Fused Filament
Fabrication 90�

0.046

Table 3. Tensile mechanical properties.

Manufacturing
technology

Specific tensile
strength (Nm/kg)

Tensile modulus
(Nm/kg)

Elongation at
break (%)

Injection molding 82.0 � 2.8 8107.0 � 741.5 1.21 � 0.110

Additive
manufacturing 0�

35.1 � 4.6 10721.0 �
1412.6

0.47 � 0.510

Additive
manufacturing 90�

23.5 � 1.7 6530.4 � 491.7 0.37 � 0.001

Figure 9. SEM images of a)-c) the injection molded and of d)-
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additional microscale tracks are created by the contact of CFs. The two
types of reinforcing materials thus help each other's the conductivity, as
CFs help to connect the different nanoscale conductive pathways formed
by the CNTs. Figure 5 illustrates the development of conductive paths in
the hybrid composites.

3.1.3. Tensile properties
The tensile properties of conducting polymers are very important.

These properties might vary depending on the chosen processing tech-
nology, as different technologies (in our case, injection molding and 3D
printing) produce different microstructures. Figure 6 shows the tensile
test results for each composite. The tensile strength of the nano-
composites increased up to a CNT content of 0.75 wt% and then began to
decrease. Tensile modulus and elongation at break remained almost
constant regardless of reinforcement content. The reason for these phe-
nomena is the aggregation tendency of CNTs—0.75 wt% of CNT was still
able to disperse in the PLA matrix properly during compounding, but
above this, dispersion was not sufficient. CNTs were then unable to
produce their reinforcing effect, and the aggregates, which acted as stress
concentrating centers, contributed to failure.

For composites reinforced with 30 wt% CF and CNT, tensile strength
and modulus, and elongation at break decreased with increasing CNT
f) the 3D printed PLAþ30CFþ0.75CNT hybrid composite.
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content. This means that an increased CNT content makes the composite
brittle. As a result, even smaller defect sites and aggregates were suffi-
cient for the appearance of cracks, leading to failure. This may be the
reason for the decrease in tensile strength and elongation at break.

3.1.4. SEM investigation
Figure 7 shows the SEM images of the injection molded samples.

Large aggregates are visible on the SEM images of the PLAþ0.5CNT
nanocomposite and between the large aggregates, the few dispersed
CNTs are not enough for good electrical connection. In the PLAþ30CF
composite, the carbon fibers are well dispersed and randomly oriented,
causing them to cross each other, making electrically conductive path-
ways. In the hybrid composites, the well-dispersed nanotubes electrically
contact the carbon fibers, increasing electric conductivity.

3.2. Increasing processability with OLA

When the OLA plasticizer was added to the hybrid composite rein-
forced with 30 wt% CF and 0.75 wt% CNT, MFI increased from 6.55 �
0.7 to 19.2 � 1.7 g/10 min, which is more than three times as much. It
means that the plasticizer decreased the viscosity and acted as a slip
additive inside the material, which facilitated the movement of the nano-
and microparticles in the melt. The easier melt processability made it
possible to process the composite via 3D printing. The OLA plasticizer
was added in a second extrusion step to the hybrid composite, as the
plasticizing effect of the OLA could have prevented the dispersion of the
nanotubes.

3.2.1. Electrical conductivity
We performed conductivity tests again to investigate the effects of

plasticization. The plasticized hybrid composite was formed into a fila-
ment and was processable via 3D printing, therefore we were able to
examine the effects of printing orientation. In material extrusion-based
additive manufacturing, the direction of melt deposition aligns the fi-
bers, thus the conductive paths as well, which is expected to cause
changes in conductivity as a function of printing direction. Schematics of
the hypothetical conductive paths can be seen in Figure 8. This also
means that electrical conductivity can be tailored to demand within a
single layer. The results in Table 2 show that in the case of the 3D printed
samples, the electrical conductivity measured parallel to the printing
direction (0�) is more than three times the conductivity measured
perpendicular to it (90�), which meets our expectations and also aligns
with the literature [30]. The difference in electrical conductivity between
the injection molded and the 3D printed samples may be due to voids in
the 3D printed structures.

3.2.2. Tensile properties
Table 3 shows the tensile mechanical properties of the plasticized

hybrid composites. As the void content of the 3D-printed samples have a
significant effect on mechanical behavior, we provide density-specific
values [31]. When OLA2 was added to the PLAþ30CFþ0.75CNT com-
posite, tensile strength, elongation at break, and tensile modulus became
nearly the same as those of the 30CF only composite. This means that in
the PLAþ30CFþ0.75CNTþ10OLA composite, the plasticizer counter-
acted the embrittling effect of the carbon nanotubes, while not reducing
electric conductivity compared to PLAþ30CFþ0.75CNT. This is of great
importance as the embrittling effect of conductive additives have rarely
been addressed in literature where most often, the elongation at break is
reduced to about two-thirds [12].

3.2.3. SEM investigation
In the injection-molded samples (Figure 9 a.-c.), the fibers are

randomly oriented and intersect at several points, creating an electrically
conductive pathway. Similarly to the unplasticized sample, the carbon
nanotubes are well dispersed, increasing the electric conductivity by
making more electric connections between the carbon fibers. In the 3D
7

printed samples (Figure 9 d.-f.), the carbon fibers are oriented in the
printing direction so that they intersect at far fewer points and are less
able to form a conductive network. The electrical connection caused by
the dispersed CNTs between the carbon fibers provides good electrical
conductivity even in highly oriented composites.

4. Conclusions

In this study, we developed electrically conductive nano- and hybrid
composites with a poly(lactic acid) (PLA) matrix for different melt pro-
cessing technologies. Electric conductivity only slightly increased when
carbon nanotubes were added to the PLA matrix. When carbon fibers
were added to the nanocomposites, the higher shear during melt mixing
helped the uniform dispersion of the carbon nanotubes, which greatly
increased the conductivity of the composite. On the other hand, the
micro- and nanoscale hybrid reinforcement greatly increased viscosity,
making melt processing difficult. The hybrid composite also became
brittle, and the cracks in it propagated faster under a smaller load. This
decreased tensile strength and elongation at break. Viscosity decreased
when an oligomeric lactic acid plasticizer was added to the hybrid
composites, resulting in easier processability either by injection molding
or 3D printing. In addition, the composite became more ductile, the
tensile strength and the elongation at break increased, while the elec-
trical conductivity decreased only slightly.
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