
����������
�������

Citation: Párizs, R.D.; Török, D.;

Ageyeva, T.; Kovács, J.G. Machine

Learning in Injection Molding: An

Industry 4.0 Method of Quality

Prediction. Sensors 2022, 22, 2704.

https://doi.org/10.3390/s22072704

Academic Editors: Raffaele Bruno

and Jose F. Monserrat

Received: 24 February 2022

Accepted: 28 March 2022

Published: 1 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Machine Learning in Injection Molding: An Industry 4.0
Method of Quality Prediction
Richárd Dominik Párizs 1 , Dániel Török 1 , Tatyana Ageyeva 1,2 and József Gábor Kovács 1,2,*

1 Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology
and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary; parizsrd@pt.bme.hu (R.D.P.);
torok@pt.bme.hu (D.T.); ageyevat@pt.bme.hu (T.A.)

2 MTA-BME Lendület Lightweight Polymer Composites Research Group, Műegyetem rkp. 3.,
H-1111 Budapest, Hungary

* Correspondence: kovacs@pt.bme.hu

Abstract: One of the essential requirements of injection molding is to ensure the stable quality of the
parts produced. However, numerous processing conditions, which are often interrelated in quite a
complex way, make this challenging. Machine learning (ML) algorithms can be the solution, as they
work in multidimensional spaces by learning the structure of datasets. In this study, we used four ML
algorithms (kNN, naïve Bayes, linear discriminant analysis, and decision tree) and compared their
effectiveness in predicting the quality of multi-cavity injection molding. We used pressure-based
quality indexes (features) as inputs for the classification algorithms. We proved that all the examined
ML algorithms adequately predict quality in injection molding even with very little training data. We
found that the decision tree algorithm was the most accurate one, with a computational time of only
8–10 s. The average performance of the decision tree algorithm exceeded 90%, even for very little
training data. We also demonstrated that feature selection does not significantly affect the accuracy
of the decision tree algorithm.

Keywords: injection molding; cavity pressure curve; machine learning; classifiers; quality control

1. Introduction

Injection molding is one of the most widely used plastic processing technologies—
more than 30% of plastic products are produced by injection molding [1]. Today injection
molding is considered a highly automated mature technology. However, to stay competitive
and adapt to the ever-changing market demands, injection molding companies must move
towards smart manufacturing, or Industry 4.0 [2]. Industry 4.0 involves the digitization
of production, which inevitably leads to the generation of Big Data [3]. The Big Data
lifecycle includes the generation, acquisition, storage, processing, and analysis of data.
During injection molding, a huge amount of data is generated and can be successfully
collected by sensors installed in different units of the injection molding machine and the
cavity [4]. Although data is one of the most valuable assets of an intelligent company, many
companies have difficulties selecting essential and useful data from the manufacturing
process and processing and analyzing this data effectively [5]. Therefore, many efforts have
been made to adopt machine learning (ML) techniques for industrial application. Several
authors are of the opinion that ML is one of the most important factors in upgrading a
traditional manufacturing system to Industry 4.0 [6].

According to Bertolini et al. [6], ML is a set of methodologies and algorithms that
can extract knowledge from data and continuously improve their capabilities by learning
from experience (i.e., from data accumulating over time). All ML methods can be divided
into three groups: supervised learning, unsupervised learning, and reinforcement learning
(Figure 1). In supervised learning, the feature acquires the relationship between the inputs
and outputs using information contained in the dataset of training examples [7]. All the

Sensors 2022, 22, 2704. https://doi.org/10.3390/s22072704 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072704
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8902-6818
https://orcid.org/0000-0003-4521-2771
https://orcid.org/0000-0003-3732-7296
https://orcid.org/0000-0002-7391-7085
https://doi.org/10.3390/s22072704
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072704?type=check_update&version=1

Sensors 2022, 22, 2704 2 of 18

output data is labeled or grouped. Based on the type of outputs, supervised learning can
be divided into two categories: classification and regression. Classification algorithms are
used for discrete outputs, while regression algorithms are used for continuous outputs [8].
Unsupervised learning uses unlabeled datasets; therefore its goal is not to make a prediction,
but rather to detect or extract patterns in the data, the nature of which may be partially or
completely unknown [6]. Reinforcement learning is not concerned with the specific form of
the input, but focuses on the action that should be taken under the current state to achieve
the final goal [9]. The most explored ML methods are supervised learning, closely followed
by unsupervised learning.

Sensors 2022, 22, x FOR PEER REVIEW 2 of 18

inputs and outputs using information contained in the dataset of training examples [7].
All the output data is labeled or grouped. Based on the type of outputs, supervised learn-
ing can be divided into two categories: classification and regression. Classification algo-
rithms are used for discrete outputs, while regression algorithms are used for continuous
outputs [8]. Unsupervised learning uses unlabeled datasets; therefore its goal is not to
make a prediction, but rather to detect or extract patterns in the data, the nature of which
may be partially or completely unknown [6]. Reinforcement learning is not concerned
with the specific form of the input, but focuses on the action that should be taken under
the current state to achieve the final goal [9]. The most explored ML methods are super-
vised learning, closely followed by unsupervised learning.

Figure 1. The classification of ML algorithms (based on [6,10]).

One of the main applications of ML algorithms in the injection molding industry is
quality management. Product quality in injection molding is quite a complex issue, as
quality can be interpreted in various ways [11]. However, three important groups of qual-
ity indicators can be distinguished: (1) the stability of dimensions and weight of the pro-
duced parts [12], surface properties (roughness, sink marks, weld lines, etc.) [13], and
physical properties (mechanical, optical, electrical, etc.) [14]. In most cases, a combination
of these criteria is understood as the quality of a part. Nevertheless, several studies have
proved that weight is a reliable index characterizing the quality of an injection molded
product and process stability, as variation in weight is inversely proportional to part qual-
ity [15,16].

Besides the direct measurement of the weight of the part, which is usually a quality
control procedure, it is essential to find a reliable process parameter which will allow
monitoring and predicting the weight of a part online. Changes in polymer properties,
particularly the specific volume of the melt, clearly indicate changes in the weight of the
part. Therefore, monitoring the specific volume of melt through controlling the pressure
and temperature in a mold cavity is a reliable tool to predict weight variation [17]. Ac-
cording to Zhou et al. [18], the specific volume of melt is mainly affected by pressure.
Therefore, they proposed a pressure integral as an effective process parameter to predict
product weight variations and characterize the quality of the injection molded parts. The
most relevant pressure data come from the runner and mold cavity [19]. The importance
of characteristics from pressure curves can have a complex relationship with the quality
of products, which may not be described with simple linear functions. In this case, ML
could help discover this relation, as ML algorithms work in multidimensional spaces by
learning the structure in the dataset [20].

Figure 1. The classification of ML algorithms (based on [6,10]).

One of the main applications of ML algorithms in the injection molding industry is
quality management. Product quality in injection molding is quite a complex issue, as
quality can be interpreted in various ways [11]. However, three important groups of quality
indicators can be distinguished: (1) the stability of dimensions and weight of the produced
parts [12], surface properties (roughness, sink marks, weld lines, etc.) [13], and physical
properties (mechanical, optical, electrical, etc.) [14]. In most cases, a combination of these
criteria is understood as the quality of a part. Nevertheless, several studies have proved
that weight is a reliable index characterizing the quality of an injection molded product
and process stability, as variation in weight is inversely proportional to part quality [15,16].

Besides the direct measurement of the weight of the part, which is usually a quality
control procedure, it is essential to find a reliable process parameter which will allow
monitoring and predicting the weight of a part online. Changes in polymer properties,
particularly the specific volume of the melt, clearly indicate changes in the weight of the
part. Therefore, monitoring the specific volume of melt through controlling the pressure and
temperature in a mold cavity is a reliable tool to predict weight variation [17]. According to
Zhou et al. [18], the specific volume of melt is mainly affected by pressure. Therefore, they
proposed a pressure integral as an effective process parameter to predict product weight
variations and characterize the quality of the injection molded parts. The most relevant
pressure data come from the runner and mold cavity [19]. The importance of characteristics
from pressure curves can have a complex relationship with the quality of products, which
may not be described with simple linear functions. In this case, ML could help discover
this relation, as ML algorithms work in multidimensional spaces by learning the structure
in the dataset [20].

Recent progress in the application of ML in injection molding is summarized by
Selvaray et al. [21]. Zhao et al. [22] used the ML approach to optimize the processing
parameters to achieve a target weight of an injection-molded product. The authors used the
support vector machine (SVM) method together with the particle swarm optimization (PSO)
algorithm. The proposed ML approach enabled stable injection molding. The deviation

Sensors 2022, 22, 2704 3 of 18

of product weight was only 0.0212%. Yin et al. [23] proposed a back-propagation neural
network to predict and optimize the warpage of injection-molded parts based on the
main process variables, including mold temperature, melt temperature, packing pressure,
packing time, and cooling time. The proposed method was able to predict the warpage of
injection-molded parts within an error range of 2%. Ogorodnyk et al. [24] applied four ML
methods to create prediction models for the thickness and width of the injection-molded
HDPE tensile specimens based on the injection molding process parameters. The authors
found the best correlation coefficient was achieved with the random forest algorithm, while
the second-best results were produced by the multilayer perceptron (MLP) neural network
method. The reduced error pruning decision tree (REPTree) performs slightly better than
the k-nearest neighbor (kNN) algorithm. The authors concluded that overall, all the four
methods showed good prediction capabilities. Ke and Huang [25] used an MLP neural
network to evaluate the quality of injection-molded parts. Instead of using processing
parameter settings as inputs, the authors used the so-called “quality indices” [26] extracted
from the system and cavity pressure curves. The maximum achieved accuracy of the
proposed prediction method was 94%. Gülçür and Whiteside [27] also used quality indexes
connected with cavity and system pressure and the position of the injection piston to predict
the quality of micro-injection-molded parts. They used a linear regression model, which
predicted quality with an accuracy of 84%.

Several authors confirmed that cavity pressure is a valuable data source that can
represent the quality of injection molded products [27–29]. In a typical cavity pressure
profile, several feature points can be extracted that define the characteristics of the injection
molding conditions [28,29]. However, the question still remains: which and how many
features should be selected from the cavity pressure profile to adequately characterize
and predict the quality of injection-molded products? For example, Huang et al. [30] used
four features from the cavity pressure curve: the peak pressure, the pressure gradient, the
viscosity index, and the energy index. Gim and Rhee [28] proposed five features to be
extracted from cavity pressure profiles: the starting point of the filling stage, the switchover
point from filling to packing, maximum cavity pressure, the endpoint of the packing stage,
and end of the cooling stage. Determining the optimal number of features is a difficult
question. However, Hua et al. [31] give some recommendations on how to define the
optimal number of features based on sample size. The general rule is that the sample
size must exceed the number of features [31]. For example, for the LDA algorithm and
a sample size of 30, the optimal number of features can vary from 3 to 12, depending on
the correlation of the features. Jain and Waller [32] claim that the optimal feature size is
proportional to √n , where n is sample size. One more rule that can help to define the
optimal number of features is the Vapnik–Chervonenkis (VC) inequality [33], which gives
an upper bound for generalization [34]. However, this generalization rule is only true if
the VC dimension is finite, which is not the case for the kNN algorithm, for example, with
k = 1 [35,36]. For discrete classifiers, there is a more accurate approach, which recommends
a significantly smaller size of the learning sample [37]. In summary, the optimal number of
features can differ for different classification algorithms.

Many authors confirm that classification and regression ML algorithms can predict
and control the quality of injection molding well. However, the great variety of the ML
algorithms and the individual features of each production run requires the development of
a new prediction method. In this study, we aim to compare the accuracy and effectiveness
of four classification algorithms in predicting the quality of multi-cavity injection molding.
We used pressure-based quality indexes as inputs for the classification algorithms.

2. Materials and Methods
2.1. Experimental Setup

For our experiments, we used an Arburg Allrounder 420 C 1000-290 injection molding
machine (Arburg GmbH+Co., Loßburg, Germany) to make products from acrylonitrile
butadiene styrene (ABS), named Terluran GP-35 (INEOS Styrolution, Manchester, United

Sensors 2022, 22, 2704 4 of 18

Kingdom). The injection molding machine has a distance of 420 mm between the tie bars
(420 mm × 420 mm), and the maximum clamping force is 1000 kN. The screw of the
injection unit has a diameter of 30 mm with an effective screw length of 23.3 (L/D); the
maximum shot volume is 106 cm3, the maximum injection pressure is 2500 bar, and the
maximum screw torque is 320 Nm. The mold was tempered with a Wittmann Tempro
Plus 2 90 (Wittmann Technology GmbH, Vienna, Austria) mold temperature control unit
with a maximum pump capacity of 60 L/min. The specimens were injection molded
in a 16-cavity mold, which contains 30 pressure sensors (Cavity Eye Ltd., Kecskemét,
Hungary) along the flow paths and in different cavities. These sensors were PC15-1-AA
indirect pressure sensors and were installed under the ejector pins. Eight sensors were
mounted into the fixed side of the mold and the rest were located in the movable side of
the mold. Figure 2 shows the layouts of the cavities (a) and the positions of the sensors in
the mold (Figure 2a,b). The products were 15 mm × 15 mm square flat specimens with a
wall thickness of 1.5 mm. In industrial production, changes in the material batch, drying,
or various manufacturing defects can change the shape of pressure curves, so we used
settings that achieve similar effects. To produce parts with different masses, we changed
the holding phase in our experiments. We used three holding pressures—200 bar, 600 bar,
and 1000 bar—with a varied holding time from 0 s to 3 s in 0.25 s steps. The other settings
were not changed during production (Table 1). We took five samples produced with each
setting after the process became stable and measured the masses of the parts with an Ohaus
Explorer analytical balance (OHAUS Europe GmbH, Uster, Switzerland). We also recorded
the in-mold pressure data for 10 s from the start of the injection phase, with a sampling
rate of 100 Hz. With a holding time of 0 s, we injection molded two series to examine the
repeatability of the injection molding machine; thus, had a total of 190 specimens. For the
classification procedure and data analysis, we used the MATLAB R2021a platform (The
MathWorks Inc., Natick, MA, USA).

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18

2. Materials and Methods
2.1. Experimental Setup

For our experiments, we used an Arburg Allrounder 420 C 1000-290 injection mold-
ing machine (Arburg GmbH+Co., Loßburg, Germany) to make products from acryloni-
trile butadiene styrene (ABS), named Terluran GP-35 (INEOS Styrolution, Manchester,
United Kingdom). The injection molding machine has a distance of 420 mm between the
tie bars (420 mm × 420 mm), and the maximum clamping force is 1000 kN. The screw of
the injection unit has a diameter of 30 mm with an effective screw length of 23.3 (L/D); the
maximum shot volume is 106 cm3, the maximum injection pressure is 2500 bar, and the
maximum screw torque is 320 Nm. The mold was tempered with a Wittmann Tempro
Plus 2 90 (Wittmann Technology GmbH, Vienna, Austria) mold temperature control unit
with a maximum pump capacity of 60 L/min. The specimens were injection molded in a
16-cavity mold, which contains 30 pressure sensors (Cavity Eye Ltd., Kecskemét, Hun-
gary) along the flow paths and in different cavities. These sensors were PC15-1-AA indi-
rect pressure sensors and were installed under the ejector pins. Eight sensors were
mounted into the fixed side of the mold and the rest were located in the movable side of
the mold. Figure 2 shows the layouts of the cavities (a) and the positions of the sensors in
the mold (Figure 2a,b). The products were 15 mm × 15 mm square flat specimens with a
wall thickness of 1.5 mm. In industrial production, changes in the material batch, drying,
or various manufacturing defects can change the shape of pressure curves, so we used
settings that achieve similar effects. To produce parts with different masses, we changed
the holding phase in our experiments. We used three holding pressures—200 bar, 600 bar,
and 1000 bar—with a varied holding time from 0 s to 3 s in 0.25 s steps. The other settings
were not changed during production (Table 1). We took five samples produced with each
setting after the process became stable and measured the masses of the parts with an
Ohaus Explorer analytical balance (OHAUS Europe GmbH, Uster, Switzerland). We also
recorded the in-mold pressure data for 10 s from the start of the injection phase, with a
sampling rate of 100 Hz. With a holding time of 0 s, we injection molded two series to
examine the repeatability of the injection molding machine; thus, had a total of 190 speci-
mens. For the classification procedure and data analysis, we used the MATLAB R2021a
platform (The MathWorks Inc., Natick, MA, USA).

(a) (b)

Figure 2. Injection mold and the pressure sensor (blue dots) positions: (a) general scheme of the
runner system with cavities; (b) sensor locations and their names in the first cavity.

Table 1. The unchanged settings of injection molding.

Process Parameter Value
Shot volume [cm3] 26

Screw rotation speed [m/min] 15
Back pressure [bar] 40

Decompression [cm3] 5
Injection velocity [cm3/s] 50

Figure 2. Injection mold and the pressure sensor (blue dots) positions: (a) general scheme of the
runner system with cavities; (b) sensor locations and their names in the first cavity.

Table 1. The unchanged settings of injection molding.

Process Parameter Value

Shot volume [cm3] 26
Screw rotation speed [m/min] 15

Back pressure [bar] 40
Decompression [cm3] 5

Injection velocity [cm3/s] 50

Switchover volume [cm3] 7
Injection pressure limit [bar] 1500

Clamping force [kN] 700
Cooling time [s] 18

Cycle time [s] 28
Melt temperature [◦C] 225
Mold temperature [◦C] 40

Sensors 2022, 22, 2704 5 of 18

2.2. Methods
2.2.1. Preparation of Data

This paper aimed to show how simple classifiers can be used to predict the quality of
injection molded products from pressure measurements. We examined four classifiers for
quality prediction: k-nearest neighbor (kNN), naïve Bayes, binary decision tree, and linear
discriminant analysis (LDA). Based on the literature review, we used the products and the
pressure curves, and only used the data from the first cavity and its runner (Figure 2b).

We first defined 19 features from cavity pressure curves in this study. Then we
implemented a feature selection procedure to determine the optimal set of features for each
of the examined classifiers. We defined nine features for both the postgate (PG) and the
end-of-cavity sensors (EOC), which gives a total of 18 features from the pressure curves
(see Equations from (1) to (9)). The 19th feature was defined only from the PG sensor and
the pregate sensor (PRG) (see Equation (10)).

PIPG =
∫ 10

0
P(t) dt (1)

PIPG,t(0−Pmax) =
∫ tmax

0
P(t) dt (2)

PIPG,t(0−Pmax)/PIPG,t(Pmax−10) =

∫ tmax
0 P(t) dt∫ 10
tmax

P(t) dt
(3)

PPG,max = max(P(t)) (4)

tPG,Pmax = arg max
t∈[0,10]

(P(t)) (5)

tPG, f irst = min{t|P(t) ≥ 5} (6)

PDPG, f irst =
P
(

tPG, f irst + 0.01 s
)
− P

(
tPG, f irst

)
0.01 s

(7)

PDPG,Pmax− =
P(tPG,Pmax − 0.09 s)− P(tPG,Pmax − 0.1 s)

0.01 s
(8)

PDPG,Pmax+ =
P(tPG,Pmax + 0.1 s)− P(tPG,Pmax + 0.09 s)

0.01 s
(9)

∆PIgate = PIPRG − PIPG (10)

PI stands for the integral of the pressure curves, and the lower index always shows
which sensor position the pressure curve was obtained from. An additional subscript
may indicate the time or time interval from where the feature was calculated. When there
was no time interval, the whole pressure curve was used, which means 10 s after the
beginning of the injection phase. The notation PD indicates the numerical differentiation of
the pressure curve. P and t indicate pressure and time, respectively. The pressure integral
values are related to the pressure characteristics for the defined intervals [38]. The ratio
of the integrals shows the ratio of the pressure rise to the pressure fall. The different time
values give an overall view of the injection and compression phase [38]. The derivatives
show the change of the rate of pressure at these time instants. The integral change on
the gate provides information about gate freezing and the pressure drop on the gate. The
values of these features were then standardized, so the dataset for each feature has a mean
of 0 and a standard deviation of 1. For clarity, most of the features (except (1), (3) and (10))
are illustrated in Figure 3.

Sensors 2022, 22, 2704 6 of 18

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18

of the injection phase. The notation 𝑃𝐷 indicates the numerical differentiation of the pres-
sure curve. 𝑃 and 𝑡 indicate pressure and time, respectively. The pressure integral values
are related to the pressure characteristics for the defined intervals [38]. The ratio of the
integrals shows the ratio of the pressure rise to the pressure fall. The different time values
give an overall view of the injection and compression phase [38]. The derivatives show
the change of the rate of pressure at these time instants. The integral change on the gate
provides information about gate freezing and the pressure drop on the gate. The values
of these features were then standardized, so the dataset for each feature has a mean of 0
and a standard deviation of 1. For clarity, most of the features (except (1), (3) and (10)) are
illustrated in Figure 3.

Figure 3. Illustration of the features extracted from the pressure curves.

All the specimens produced were grouped into three classes (11) based on their
weight: 𝑈𝑛𝑑𝑒𝑟𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 < 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 < 𝑂𝑣𝑒𝑟𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 (11)

Parts between 0.470 and 0.475 g were classified as “acceptable”. A narrow range was
chosen as acceptable, so the number of acceptable products was low compared to the
number of non-acceptable products. Typically, for such a small product, a narrow range
of acceptable values would be expected in the industry; in our case, it was slightly more
than 1% of the weight. The distribution of the weights of samples is approximated with
the kernel function. We also highlighted the probability of random sampling from the
acceptable class (Figure 4).

Figure 4. The probability density function of masses calculated with the kernel function (and the p-
value, which shows the probability of random sampling from this class).

Figure 3. Illustration of the features extracted from the pressure curves.

All the specimens produced were grouped into three classes (11) based on their weight:

Undercompensated < Acceptable < Overcompensated (11)

Parts between 0.470 and 0.475 g were classified as “acceptable”. A narrow range
was chosen as acceptable, so the number of acceptable products was low compared to the
number of non-acceptable products. Typically, for such a small product, a narrow range
of acceptable values would be expected in the industry; in our case, it was slightly more
than 1% of the weight. The distribution of the weights of samples is approximated with
the kernel function. We also highlighted the probability of random sampling from the
acceptable class (Figure 4).

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18

of the injection phase. The notation 𝑃𝐷 indicates the numerical differentiation of the pres-
sure curve. 𝑃 and 𝑡 indicate pressure and time, respectively. The pressure integral values
are related to the pressure characteristics for the defined intervals [38]. The ratio of the
integrals shows the ratio of the pressure rise to the pressure fall. The different time values
give an overall view of the injection and compression phase [38]. The derivatives show
the change of the rate of pressure at these time instants. The integral change on the gate
provides information about gate freezing and the pressure drop on the gate. The values
of these features were then standardized, so the dataset for each feature has a mean of 0
and a standard deviation of 1. For clarity, most of the features (except (1), (3) and (10)) are
illustrated in Figure 3.

Figure 3. Illustration of the features extracted from the pressure curves.

All the specimens produced were grouped into three classes (11) based on their
weight: 𝑈𝑛𝑑𝑒𝑟𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 < 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 < 𝑂𝑣𝑒𝑟𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 (11)

Parts between 0.470 and 0.475 g were classified as “acceptable”. A narrow range was
chosen as acceptable, so the number of acceptable products was low compared to the
number of non-acceptable products. Typically, for such a small product, a narrow range
of acceptable values would be expected in the industry; in our case, it was slightly more
than 1% of the weight. The distribution of the weights of samples is approximated with
the kernel function. We also highlighted the probability of random sampling from the
acceptable class (Figure 4).

Figure 4. The probability density function of masses calculated with the kernel function (and the p-
value, which shows the probability of random sampling from this class).

Figure 4. The probability density function of masses calculated with the kernel function (and the
p-value, which shows the probability of random sampling from this class).

2.2.2. Random Sampling

The results of mass measurements were collected in a table with 190 rows and
20 columns (19 columns for features and 1 column for the class of the sample). From
this table, different training sets were created by random sampling.

We investigated how well these classifiers work with our data in the case of small
datasets (less than ten training samples per each class). For this, we first randomly selected
training samples from each class. Then we stored the index of the selected samples in a new
table (index table). Note that indices show the place of the training samples in the original
dataset. Then we repeated this process a hundred times to investigate the robustness of
the training process. This whole sampling process was repeated with 2, 3 . . . 10 training
samples per class (Figure 5). Each cell in the index table contains as many indices as
we want to use for training. If a cell from the second column of the table is selected, it
means that we will use two samples per class, so there will be six indices in the cell in
total. For each classification, one cell is selected, which gives information about how many

Sensors 2022, 22, 2704 7 of 18

and specifically which data are used for training. This index table allowed the different
classification algorithms to be tested on identical sets of samples.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 18

2.2.2. Random Sampling
The results of mass measurements were collected in a table with 190 rows and 20

columns (19 columns for features and 1 column for the class of the sample). From this
table, different training sets were created by random sampling.

We investigated how well these classifiers work with our data in the case of small
datasets (less than ten training samples per each class). For this, we first randomly selected
training samples from each class. Then we stored the index of the selected samples in a
new table (index table). Note that indices show the place of the training samples in the
original dataset. Then we repeated this process a hundred times to investigate the robust-
ness of the training process. This whole sampling process was repeated with 2, 3…10
training samples per class (Figure 5). Each cell in the index table contains as many indices
as we want to use for training. If a cell from the second column of the table is selected, it
means that we will use two samples per class, so there will be six indices in the cell in
total. For each classification, one cell is selected, which gives information about how many
and specifically which data are used for training. This index table allowed the different
classification algorithms to be tested on identical sets of samples.

Figure 5. The index table.

2.2.3. Formulating of Feature Datasets
Another goal was to investigate which selected features are the most important for

the classification of the mass of parts. We used three feature sets for our research, which
were determined from the original dataset. The first feature set was the original one,
which contained all the features from the original dataset, so it had 19 columns and was
referred to as a complete dataset (CD). The second dataset was generated with principal
component analysis and was referred to as the modified dataset (MD). We analyzed the
CD to obtain the directions that explain the variance of data. We used the first eight prin-
cipal components as new dimensions for our data because these components explained
more than 95% of the variance. The third feature set was defined separately for each clas-
sifier with a selective forward feature selection method (SFS) and was referred to as the
selected dataset (SD). The SFS used a leave-one-out cross-validation method with the CD
and selected the features for each classifier that were best suited for the classification.
Thus, the dimensions in the SD may differ for each classifier, but the generation method
was the same. We used each dataset type for all classification methods, and the whole
process can be seen in Figure 6.

Figure 5. The index table.

2.2.3. Formulating of Feature Datasets

Another goal was to investigate which selected features are the most important for
the classification of the mass of parts. We used three feature sets for our research, which
were determined from the original dataset. The first feature set was the original one, which
contained all the features from the original dataset, so it had 19 columns and was referred
to as a complete dataset (CD). The second dataset was generated with principal component
analysis and was referred to as the modified dataset (MD). We analyzed the CD to obtain the
directions that explain the variance of data. We used the first eight principal components
as new dimensions for our data because these components explained more than 95% of the
variance. The third feature set was defined separately for each classifier with a selective
forward feature selection method (SFS) and was referred to as the selected dataset (SD). The
SFS used a leave-one-out cross-validation method with the CD and selected the features
for each classifier that were best suited for the classification. Thus, the dimensions in the
SD may differ for each classifier, but the generation method was the same. We used each
dataset type for all classification methods, and the whole process can be seen in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 18

Figure 6. The schematic representation of the classification process.

2.2.4. Classification Algorithms
The kNN algorithms were used with default settings, which means the algorithm

searched for the first nearest neighbor, the distance metric was Euclidean distance, and
there was no distance weighting. The naïve Bayes classifier used a kernel distribution in-
stead of a normal distribution for fitting; the kernel smoother type was Gaussian, and
prior probabilities were calculated from the relative frequencies of the classes from train-
ing data. The decision tree classifier used the default settings except the minimum number
of branch node observations parameter, because the default size is 10, which would not
allow the tree to branch in the case of 1 or 2 training data per class. Therefore, we changed
this parameter to the actual number of training samples per class. The LDA classifier used
most of the default settings, except that all classes had the same diagonal covariance ma-
trix.

2.2.5. Method of Comparison of Classifiers
After the training of a classifier, the performance of each algorithm was estimated

with the accuracy, which was calculated as follows (12). 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 ∙ 100 (12)

The results are presented in a usual plot with mean and standard deviation (Figure
7a) and with a boxplot (Figure 7b), which gives more information about the distribution
of the results. In each case of a cardinal number of training data, there were 100 different
classifications with training data determined from the index table, and the remaining data
were used for testing. The boxplot suggests that the distribution of accuracy is non-Gauss-
ian. To prove this, we used two normality tests with each cardinal number of training
samples: the Shapiro–Wilk test and the Kolmogorov–Smirnov test. The null hypothesis of
both tests is that the accuracy results come from a normal distribution at a 5% significance
level, but they approach the calculation with a different method. On the sample size of
100, the power of the Shapiro–Wilk test is mostly greater than that of the Kolmogorov–
Smirnov test. Still, Razali and Wah [27] showed that the skewness and kurtosis coefficients
of distribution have a significant effect on the power of these tests. Therefore, distributions
were only considered normal if both tests showed that we cannot reject the null hypothe-
sis.

Figure 6. The schematic representation of the classification process.

2.2.4. Classification Algorithms

The kNN algorithms were used with default settings, which means the algorithm
searched for the first nearest neighbor, the distance metric was Euclidean distance, and
there was no distance weighting. The naïve Bayes classifier used a kernel distribution
instead of a normal distribution for fitting; the kernel smoother type was Gaussian, and
prior probabilities were calculated from the relative frequencies of the classes from training
data. The decision tree classifier used the default settings except the minimum number of
branch node observations parameter, because the default size is 10, which would not allow
the tree to branch in the case of 1 or 2 training data per class. Therefore, we changed this
parameter to the actual number of training samples per class. The LDA classifier used most
of the default settings, except that all classes had the same diagonal covariance matrix.

Sensors 2022, 22, 2704 8 of 18

2.2.5. Method of Comparison of Classifiers

After the training of a classifier, the performance of each algorithm was estimated with
the accuracy, which was calculated as follows (12).

Accuracy =
Number o f correct classi f ication

Number o f all classi f ication
·100 (12)

The results are presented in a usual plot with mean and standard deviation (Figure 7a)
and with a boxplot (Figure 7b), which gives more information about the distribution of
the results. In each case of a cardinal number of training data, there were 100 different
classifications with training data determined from the index table, and the remaining
data were used for testing. The boxplot suggests that the distribution of accuracy is non-
Gaussian. To prove this, we used two normality tests with each cardinal number of training
samples: the Shapiro–Wilk test and the Kolmogorov–Smirnov test. The null hypothesis of
both tests is that the accuracy results come from a normal distribution at a 5% significance
level, but they approach the calculation with a different method. On the sample size of 100,
the power of the Shapiro–Wilk test is mostly greater than that of the Kolmogorov–Smirnov
test. Still, Razali and Wah [27] showed that the skewness and kurtosis coefficients of
distribution have a significant effect on the power of these tests. Therefore, distributions
were only considered normal if both tests showed that we cannot reject the null hypothesis.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 18

(a) (b)

Figure 7. The performance of the kNN classifier when all features were used (CD) showed with (a)
mean and standard deviation; (b) boxplot.

3. Results
3.1. The KNN Classifier

First, we used the CD with all the features derived from the pressure curves. The
results (Figure 7a) indicate that with the increase of the number of training samples, the
mean of accuracy increased as well. Standard deviation decreased until the curve reached
a plateau. The boxplot (Figure 7b) shows that the interquartile region and the difference
between the minimum and maximum values decreased dramatically with more training
data. The results of the MD (Figure 8), the dataset with principal components, did not
show much difference compared to the results of the CD. However, the SD had a great
effect on the accuracy of the classifier; this dataset contained the following features: PIPG,
PIPG,t(0−Pmax), and ΔPIgate. We showed with the normality test that the results of classifications
came from a non-Gaussian distribution. Therefore, we performed a Kruskal–Wallis one-
way analysis of variance for each cardinal number of training data, with a significance
level of 0.05 to show a difference between the results of classifications. The null hypothesis
(H0) of the test is that the mean ranks of the groups are the same. We can reject the null
hypothesis if the calculated p-value is smaller than the significance level. We estimated
the epsilon squared estimate of effect size (13) for the Kruskal–Wallis test (Table A1 in the
Appendix A). 𝜀௥ଶ = ఞమሺ௡మିଵሻ/ሺ௡ାଵሻ, (13)

In Equation (12), 𝜀௥ଶ means the estimate of effect size, 𝜒ଶ corresponds to the 𝜒ଶ-statis-
tic, and 𝑛 is the total number of classifications. If epsilon squared is 1, it means perfect
correlation, and if it is 0, it indicates no relationship [28]. The analysis showed that there
is a significant difference between the classifications. Therefore, we performed the Dunn–
Šidak post hoc test, which makes a pairwise comparison of each tested group and controls
the Type I error rate (H0 is rejected, but it is true) with adjusted p-values (p*). If the adjusted
p-value is smaller than 0.05, we can conclude that there is a significant difference between
the groups. When all features (CD) and principal components (MD) were used, we could
not reject the null hypothesis (Table A1 in the Appendix A). However, the feature selected
by SFS made a significant difference compared to CD and MD (Figure 8).

Figure 7. The performance of the kNN classifier when all features were used (CD) showed with
(a) mean and standard deviation; (b) boxplot.

3. Results
3.1. The KNN Classifier

First, we used the CD with all the features derived from the pressure curves. The
results (Figure 7a) indicate that with the increase of the number of training samples, the
mean of accuracy increased as well. Standard deviation decreased until the curve reached
a plateau. The boxplot (Figure 7b) shows that the interquartile region and the difference
between the minimum and maximum values decreased dramatically with more training
data. The results of the MD (Figure 8), the dataset with principal components, did not show
much difference compared to the results of the CD. However, the SD had a great effect on the
accuracy of the classifier; this dataset contained the following features: PIPG, PIPG,t(0−Pmax),
and ∆PIgate. We showed with the normality test that the results of classifications came from
a non-Gaussian distribution. Therefore, we performed a Kruskal–Wallis one-way analysis
of variance for each cardinal number of training data, with a significance level of 0.05 to
show a difference between the results of classifications. The null hypothesis (H0) of the test
is that the mean ranks of the groups are the same. We can reject the null hypothesis if the

Sensors 2022, 22, 2704 9 of 18

calculated p-value is smaller than the significance level. We estimated the epsilon squared
estimate of effect size (13) for the Kruskal–Wallis test (Table A1 in the Appendix A).

ε2
r =

χ2

(n2 − 1)/(n + 1)
, (13)

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18

Figure 8. The results of classification with different feature sets.

3.2. Naïve Bayes Classifier
We used a naïve Bayes classifier for our research with the three datasets mentioned

earlier. The SD for this classifier contained only one feature (PIPG). In the case of two train-
ing data per class, we observed a drastic average performance drop when the feature set
was defined from principal components (MD) or the SFS method (SD) (see Figure 9). This
is due to the distribution of the training data. In the case of one training point per class,
the spreads of the kernel distributions calculated from the samples are similar for each
category. However, when we had two or more samples per class (for training), there were
cases when the classification was particularly inaccurate due to the random sampling and
the distribution of the original dataset. In certain cases, the training samples come from a
very small environment for some classes, while for other groups, the distance between the
samples can be several times larger. In these cases, the kernel distribution fitted for the
first type of data will be very tight, while a much wider distribution will be fitted on the
data with a large distance. Because of the width of the wider distribution, the data far from
its training data will more likely belong to that distribution, even near the training sam-
ples of the other class. The more training samples there are, the better the algorithm rec-
ognizes the distribution of the classes. The normality test proved that the results of the
classification did not come from a normal distribution. The Kruskal–Wallis test confirmed
that the different feature sets caused, in most cases, significant changes in the accuracy of
classifiers (Table A2 in the Appendix A). In the case of one training data per class, the post
hoc test showed no significant difference between the classification results when CD was
used and the classification results from MD. The use of SD did not make a large difference
in some cases where CD was used.

Figure 9. The results of naïve Bayes classifier with the different datasets.

Figure 8. The results of classification with different feature sets.

In Equation (12), ε2
r means the estimate of effect size, χ2 corresponds to the χ2-statistic,

and n is the total number of classifications. If epsilon squared is 1, it means perfect
correlation, and if it is 0, it indicates no relationship [28]. The analysis showed that there is a
significant difference between the classifications. Therefore, we performed the Dunn–Šidak
post hoc test, which makes a pairwise comparison of each tested group and controls the
Type I error rate (H0 is rejected, but it is true) with adjusted p-values (p*). If the adjusted
p-value is smaller than 0.05, we can conclude that there is a significant difference between
the groups. When all features (CD) and principal components (MD) were used, we could
not reject the null hypothesis (Table A1 in the Appendix A). However, the feature selected
by SFS made a significant difference compared to CD and MD (Figure 8).

3.2. Naïve Bayes Classifier

We used a naïve Bayes classifier for our research with the three datasets mentioned
earlier. The SD for this classifier contained only one feature (PIPG). In the case of two
training data per class, we observed a drastic average performance drop when the feature
set was defined from principal components (MD) or the SFS method (SD) (see Figure 9).
This is due to the distribution of the training data. In the case of one training point per
class, the spreads of the kernel distributions calculated from the samples are similar for
each category. However, when we had two or more samples per class (for training), there
were cases when the classification was particularly inaccurate due to the random sampling
and the distribution of the original dataset. In certain cases, the training samples come from
a very small environment for some classes, while for other groups, the distance between
the samples can be several times larger. In these cases, the kernel distribution fitted for
the first type of data will be very tight, while a much wider distribution will be fitted on
the data with a large distance. Because of the width of the wider distribution, the data far
from its training data will more likely belong to that distribution, even near the training
samples of the other class. The more training samples there are, the better the algorithm
recognizes the distribution of the classes. The normality test proved that the results of the
classification did not come from a normal distribution. The Kruskal–Wallis test confirmed
that the different feature sets caused, in most cases, significant changes in the accuracy of
classifiers (Table A2 in the Appendix A). In the case of one training data per class, the post
hoc test showed no significant difference between the classification results when CD was

Sensors 2022, 22, 2704 10 of 18

used and the classification results from MD. The use of SD did not make a large difference
in some cases where CD was used.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 18

Figure 8. The results of classification with different feature sets.

3.2. Naïve Bayes Classifier
We used a naïve Bayes classifier for our research with the three datasets mentioned

earlier. The SD for this classifier contained only one feature (PIPG). In the case of two train-
ing data per class, we observed a drastic average performance drop when the feature set
was defined from principal components (MD) or the SFS method (SD) (see Figure 9). This
is due to the distribution of the training data. In the case of one training point per class,
the spreads of the kernel distributions calculated from the samples are similar for each
category. However, when we had two or more samples per class (for training), there were
cases when the classification was particularly inaccurate due to the random sampling and
the distribution of the original dataset. In certain cases, the training samples come from a
very small environment for some classes, while for other groups, the distance between the
samples can be several times larger. In these cases, the kernel distribution fitted for the
first type of data will be very tight, while a much wider distribution will be fitted on the
data with a large distance. Because of the width of the wider distribution, the data far from
its training data will more likely belong to that distribution, even near the training sam-
ples of the other class. The more training samples there are, the better the algorithm rec-
ognizes the distribution of the classes. The normality test proved that the results of the
classification did not come from a normal distribution. The Kruskal–Wallis test confirmed
that the different feature sets caused, in most cases, significant changes in the accuracy of
classifiers (Table A2 in the Appendix A). In the case of one training data per class, the post
hoc test showed no significant difference between the classification results when CD was
used and the classification results from MD. The use of SD did not make a large difference
in some cases where CD was used.

Figure 9. The results of naïve Bayes classifier with the different datasets. Figure 9. The results of naïve Bayes classifier with the different datasets.

3.3. Decision Tree Classifier

We made classifications with decision tree classifiers with the datasets. According
to the normality tests, the accuracy results from the classifications did not have a normal
distribution. The post hoc tests showed that selective feature selection had no significant
effect on the accuracy of the classifier compared to the case when the classifier used all
features (see Figure 10a and Table A3 in the Appendix A). Still, the calculation time for
SFS was three times more than classification time, so it is preferable not to use feature
selection for this classifier. The SD dataset contained only one feature (PIPG) for the decision
tree classifier.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18

3.3. Decision Tree Classifier
We made classifications with decision tree classifiers with the datasets. According to

the normality tests, the accuracy results from the classifications did not have a normal
distribution. The post hoc tests showed that selective feature selection had no significant
effect on the accuracy of the classifier compared to the case when the classifier used all
features (see Figure 10a and Table A3 in the Appendix A). Still, the calculation time for
SFS was three times more than classification time, so it is preferable not to use feature
selection for this classifier. The SD dataset contained only one feature (PIPG) for the deci-
sion tree classifier.

(a) (b)

Figure 10. (a) The results of decision tree classifiers with different datasets; (b) a decision tree.

The reason for the similar results of CD and SD was that the decision tree does not
always use each feature for classification. It chooses dimensions with which it can make
splits and new nodes (Figure 10b). The training of the decision tree is based on the Gini
index (14), which showed the impurity of the nodes in the decision tree. 𝐺 = 1 − ∑ 𝑝௜ଶ௖௜ୀଵ , (14)

where 𝐺 is the Gini index; 𝑝௜ is the proportion of the observations in the i-th class in the
node compared to the number of total observations.

For each node, node risk can be calculated with the following Equation (15). 𝑅௝ = 𝑃௝ ∙ 𝐺௝ (15)

where 𝑅௝ is the so-called node risk of the j-th node, 𝐺௝ is the Gini index calculated for the
j-th node, and 𝑃௝ = 𝑚௝/𝑚௔௟௟ where 𝑚௝ is the number of data in the j-th node, and 𝑚௔௟௟ de-
notes all data in the tree during training.

The growth of importance on the selected node of the feature can be calculated for
each node with Equation (16). Δ𝐼௝ = 𝑅௝ − 𝑅௝,ଵ − 𝑅௝,ଶ𝑁௦௣௟௜௧ (16)

where 𝛥𝐼௝ is the growth of the importance of a feature on the j-th node, 𝑅௝ is the risk of the
parent node, 𝑅௝,ଵ and 𝑅௝,ଶ are the risk of the children nodes of j-th node, and 𝑁௦௣௟௜௧ denotes
the total number of branches in the tree.

The overall importance of a feature can be calculated by summing the growth of im-
portance for that feature (17). 𝐼௙ = ∑ Δ𝐼௝,௙ே௝ୀଵ , (17)

where 𝐼௙ is the importance of the selected feature 𝑓, Δ𝐼௝,௙ is the growth of importance for
the selected feature 𝑓 on the j-th node, and 𝑁 is the number of nodes in the decision tree.

Figure 10. (a) The results of decision tree classifiers with different datasets; (b) a decision tree.

The reason for the similar results of CD and SD was that the decision tree does not
always use each feature for classification. It chooses dimensions with which it can make
splits and new nodes (Figure 10b). The training of the decision tree is based on the Gini
index (14), which showed the impurity of the nodes in the decision tree.

G = 1−∑c
i=1 p2

i , (14)

where G is the Gini index; pi is the proportion of the observations in the i-th class in the
node compared to the number of total observations.

For each node, node risk can be calculated with the following Equation (15).

Rj = Pj·Gj (15)

Sensors 2022, 22, 2704 11 of 18

where Rj is the so-called node risk of the j-th node, Gj is the Gini index calculated for the
j-th node, and Pj = mj/mall where mj is the number of data in the j-th node, and mall
denotes all data in the tree during training.

The growth of importance on the selected node of the feature can be calculated for
each node with Equation (16).

∆Ij =
Rj − Rj,1 − Rj,2

Nsplit
(16)

where ∆Ij is the growth of the importance of a feature on the j-th node, Rj is the risk of the
parent node, Rj,1 and Rj,2 are the risk of the children nodes of j-th node, and Nsplit denotes
the total number of branches in the tree.

The overall importance of a feature can be calculated by summing the growth of
importance for that feature (17).

I f = ∑N
j=1 ∆Ij, f , (17)

where I f is the importance of the selected feature f , ∆Ij, f is the growth of importance for
the selected feature f on the j-th node, and N is the number of nodes in the decision tree. If
a node does not use features (such as leaf nodes) or does not use the selected feature, then
the growth of importance on the selected node is zero.

The similar accuracy results with the CD and with the SD are possible due to the similar
way they build their trees. Therefore, we examined the feature importance values when the
model could use all features. The results show that the classifier with CD sometimes uses
several features to build the tree, such as PIEOC, but the importance of PIPG is ten times
greater than the importance of the other features. This means that the splitting made by
PIPG is more significant than the others. The information carried by the other features has
no significant effect on the accuracy in this case if used at all.

3.4. Discriminant Analysis Classifier

We used the discriminant analysis classifier, but in this case, training with one sam-
ple per class was not possible because the classifier needed more data points than the
number of classes to calculate the covariance matrix. The SD increased the accuracy of
the classifier in each case (Figure 11) significantly (Table A4 in the Appendix A). For the
discriminant analysis classifier, the SD contained the following features: PIEOC, PPG,max,
and PIPG,t(0−Pmax)/PIPG,t(Pmax−10).

Sensors 2022, 22, x FOR PEER REVIEW 12 of 18

If a node does not use features (such as leaf nodes) or does not use the selected feature,
then the growth of importance on the selected node is zero.

The similar accuracy results with the CD and with the SD are possible due to the
similar way they build their trees. Therefore, we examined the feature importance values
when the model could use all features. The results show that the classifier with CD some-
times uses several features to build the tree, such as 𝑃𝐼ாை஼, but the importance of 𝑃𝐼௉ீ is
ten times greater than the importance of the other features. This means that the splitting
made by 𝑃𝐼௉ீ is more significant than the others. The information carried by the other
features has no significant effect on the accuracy in this case if used at all.

3.4. Discriminant Analysis Classifier
We used the discriminant analysis classifier, but in this case, training with one sam-

ple per class was not possible because the classifier needed more data points than the
number of classes to calculate the covariance matrix. The SD increased the accuracy of the
classifier in each case (Figure 11) significantly (Table A4 in the Appendix A). For the dis-
criminant analysis classifier, the SD contained the following features: PIEOC, PPG,max, and
PIPG,t(0−Pmax)/PIPG,t(Pmax−10).

Figure 11. The results of the LDA classifier with different datasets.

This was because the classes sometimes overlap, which makes classification more
difficult. In addition, many features are more likely to have outliers along a dimension,
and these outliers shift the mean of the normal distribution along that dimension with few
samples. Figure 12 shows an example of the new test data, which originally belong to the
“Undercompensated” class. However, from the contour plots of normal distributions (Fig-
ure 12a), it looks as if this test sample should come from the “Acceptable” class. Classifi-
cation is easier when we show these samples on a different plane (Figure 12b). In this
example, the classifier with only features selected by SFS had 11% higher accuracy. When
there are many such dimensions with significant overlaps, the accuracy of the classifier is
significantly impaired.

Figure 11. The results of the LDA classifier with different datasets.

This was because the classes sometimes overlap, which makes classification more
difficult. In addition, many features are more likely to have outliers along a dimension,
and these outliers shift the mean of the normal distribution along that dimension with
few samples. Figure 12 shows an example of the new test data, which originally belong to

Sensors 2022, 22, 2704 12 of 18

the “Undercompensated” class. However, from the contour plots of normal distributions
(Figure 12a), it looks as if this test sample should come from the “Acceptable” class. Clas-
sification is easier when we show these samples on a different plane (Figure 12b). In this
example, the classifier with only features selected by SFS had 11% higher accuracy. When
there are many such dimensions with significant overlaps, the accuracy of the classifier is
significantly impaired.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18

(a) (b)

Figure 12. Training data and test data (from the uncompensated class) with distributions presented
in two different dimension planes: (a) in two “worse” dimensions; (b) in the two “best” dimensions
selected by the SFS method. Note that we used eight training samples per class.

When the classification was made with MD, the more components were used, the
less information they added to the model, and therefore the more overlap there was be-
tween classes. The subspace defined with the sixth and seventh principal components
cannot recognize the classes correctly, especially for the test data that originally came from
the incomplete class (Figure 13a). If the first and second principal components were used,
the classification for this special case (Figure 13b) would be much more accurate.

(a) (b)

Figure 13. Training data and test data (from the undercompensated class) with distributions pre-
sented in two different dimension planes: (a) in dimensions created by the sixth and the seventh
principal component; (b) in dimensions created by the first and the second principal component.
Note that we used five training samples per class.

3.5. Comparison of the Most Accurate Classifiers
The comparison of feature sets showed that the feature sets defined with the SFS

method (SD) were more efficient for each classifier than the features defined from princi-
pal components (MD) or when all the features were used (CD). The effectiveness of clas-
sifiers was also compared (Figure 14) for the case when the feature set with the best per-
formance was used. The results (Table A5 in the Appendix A) show that the decision tree
classifier would be the best choice; however, for more (but still few) training data, each
classifier would predict the class of the injection molded samples quite well. After the
statistical analysis, we showed that the decision tree and naïve Bayes classifier results in
the case of one sample per class were the same with the effect size of zero. In this case, the

Figure 12. Training data and test data (from the uncompensated class) with distributions presented
in two different dimension planes: (a) in two “worse” dimensions; (b) in the two “best” dimensions
selected by the SFS method. Note that we used eight training samples per class.

When the classification was made with MD, the more components were used, the less
information they added to the model, and therefore the more overlap there was between
classes. The subspace defined with the sixth and seventh principal components cannot
recognize the classes correctly, especially for the test data that originally came from the
incomplete class (Figure 13a). If the first and second principal components were used, the
classification for this special case (Figure 13b) would be much more accurate.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 18

(a) (b)

Figure 12. Training data and test data (from the uncompensated class) with distributions presented
in two different dimension planes: (a) in two “worse” dimensions; (b) in the two “best” dimensions
selected by the SFS method. Note that we used eight training samples per class.

When the classification was made with MD, the more components were used, the
less information they added to the model, and therefore the more overlap there was be-
tween classes. The subspace defined with the sixth and seventh principal components
cannot recognize the classes correctly, especially for the test data that originally came from
the incomplete class (Figure 13a). If the first and second principal components were used,
the classification for this special case (Figure 13b) would be much more accurate.

(a) (b)

Figure 13. Training data and test data (from the undercompensated class) with distributions pre-
sented in two different dimension planes: (a) in dimensions created by the sixth and the seventh
principal component; (b) in dimensions created by the first and the second principal component.
Note that we used five training samples per class.

3.5. Comparison of the Most Accurate Classifiers
The comparison of feature sets showed that the feature sets defined with the SFS

method (SD) were more efficient for each classifier than the features defined from princi-
pal components (MD) or when all the features were used (CD). The effectiveness of clas-
sifiers was also compared (Figure 14) for the case when the feature set with the best per-
formance was used. The results (Table A5 in the Appendix A) show that the decision tree
classifier would be the best choice; however, for more (but still few) training data, each
classifier would predict the class of the injection molded samples quite well. After the
statistical analysis, we showed that the decision tree and naïve Bayes classifier results in
the case of one sample per class were the same with the effect size of zero. In this case, the

Figure 13. Training data and test data (from the undercompensated class) with distributions presented
in two different dimension planes: (a) in dimensions created by the sixth and the seventh principal
component; (b) in dimensions created by the first and the second principal component. Note that we
used five training samples per class.

3.5. Comparison of the Most Accurate Classifiers

The comparison of feature sets showed that the feature sets defined with the SFS
method (SD) were more efficient for each classifier than the features defined from principal
components (MD) or when all the features were used (CD). The effectiveness of classifiers
was also compared (Figure 14) for the case when the feature set with the best performance
was used. The results (Table A5 in the Appendix A) show that the decision tree classifier
would be the best choice; however, for more (but still few) training data, each classifier
would predict the class of the injection molded samples quite well. After the statistical

Sensors 2022, 22, 2704 13 of 18

analysis, we showed that the decision tree and naïve Bayes classifier results in the case of
one sample per class were the same with the effect size of zero. In this case, the boundaries
of decision trees are the same as boundaries defined from posterior probabilities.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18

boundaries of decision trees are the same as boundaries defined from posterior probabil-
ities.

The computation time of classification (Figure 15) for the naïve Bayes classifier was
the longest (117 s), and the other three classifiers processed the data much faster (8–10 s).
The computation time of SFS was different for each classifier; the decision tree and naïve
Bayes classifier needed the shortest time (34–35 s). In the case of kNN, the selection of
features required more time (64 s). The most time was required when SFS worked with
the LDA classifier (101 s). Even though the classifications were almost equally accurate
for ten samples per class, the calculation time of classification and feature selection made
the decision tree the most favorable classifier in this case (Table 2).

Figure 14. Comparison of classifiers with features chosen by the SFS method.

Figure 15. Calculation times for each classifier.

Table 2. Comparison of different classifiers and their performance with CD and the calculation time for feature selection.

Classifier
2 Samples/Class 10 Samples/Class Calculation

Time for the
CD [s]

SFS Calcula-
tion Time [s] Average Perfor-

mance [%]
Worst Case

[%]
Best Case

[%]
Average Per-
formance [%]

Worst Case
[%]

Best Case
[%]

kNN 77.77 50.54 88.04 85.14 73.13 93.12 8–10 64
Naïve Bayes 70.34 29.35 90.76 88.27 72.50 94.38 117 34–35

Decision Tree 90.97 75.54 97.28 93.61 85.63 99.38 8–10 34–35
LDA 81.42 45.11 94.57 86.26 77.50 95.63 8–10 101

4. Conclusions
We proved that simple classifiers can be used to predict quality in injection molding

even with few training data. For our research, we collected the pressure data directly from
the mold cavity. We defined the most important features for each classifier from the pres-
sure curve with a selective feature selection method and principal component analysis.

Figure 14. Comparison of classifiers with features chosen by the SFS method.

The computation time of classification (Figure 15) for the naïve Bayes classifier was
the longest (117 s), and the other three classifiers processed the data much faster (8–10 s).
The computation time of SFS was different for each classifier; the decision tree and naïve
Bayes classifier needed the shortest time (34–35 s). In the case of kNN, the selection of
features required more time (64 s). The most time was required when SFS worked with
the LDA classifier (101 s). Even though the classifications were almost equally accurate for
ten samples per class, the calculation time of classification and feature selection made the
decision tree the most favorable classifier in this case (Table 2).

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18

boundaries of decision trees are the same as boundaries defined from posterior probabil-
ities.

The computation time of classification (Figure 15) for the naïve Bayes classifier was
the longest (117 s), and the other three classifiers processed the data much faster (8–10 s).
The computation time of SFS was different for each classifier; the decision tree and naïve
Bayes classifier needed the shortest time (34–35 s). In the case of kNN, the selection of
features required more time (64 s). The most time was required when SFS worked with
the LDA classifier (101 s). Even though the classifications were almost equally accurate
for ten samples per class, the calculation time of classification and feature selection made
the decision tree the most favorable classifier in this case (Table 2).

Figure 14. Comparison of classifiers with features chosen by the SFS method.

Figure 15. Calculation times for each classifier.

Table 2. Comparison of different classifiers and their performance with CD and the calculation time for feature selection.

Classifier
2 Samples/Class 10 Samples/Class Calculation

Time for the
CD [s]

SFS Calcula-
tion Time [s] Average Perfor-

mance [%]
Worst Case

[%]
Best Case

[%]
Average Per-
formance [%]

Worst Case
[%]

Best Case
[%]

kNN 77.77 50.54 88.04 85.14 73.13 93.12 8–10 64
Naïve Bayes 70.34 29.35 90.76 88.27 72.50 94.38 117 34–35

Decision Tree 90.97 75.54 97.28 93.61 85.63 99.38 8–10 34–35
LDA 81.42 45.11 94.57 86.26 77.50 95.63 8–10 101

4. Conclusions
We proved that simple classifiers can be used to predict quality in injection molding

even with few training data. For our research, we collected the pressure data directly from
the mold cavity. We defined the most important features for each classifier from the pres-
sure curve with a selective feature selection method and principal component analysis.

Figure 15. Calculation times for each classifier.

Table 2. Comparison of different classifiers and their performance with CD and the calculation time
for feature selection.

Classifier

2 Samples/Class 10 Samples/Class
Calculation
Time for the

CD [s]

SFS
Calculation

Time [s]
Average

Performance [%] Worst Case [%] Best Case [%]
Average

Performance
[%]

Worst Case
[%] Best Case [%]

kNN 77.77 50.54 88.04 85.14 73.13 93.12 8–10 64
Naïve Bayes 70.34 29.35 90.76 88.27 72.50 94.38 117 34–35
Decision Tree 90.97 75.54 97.28 93.61 85.63 99.38 8–10 34–35

LDA 81.42 45.11 94.57 86.26 77.50 95.63 8–10 101

4. Conclusions

We proved that simple classifiers can be used to predict quality in injection molding
even with few training data. For our research, we collected the pressure data directly from
the mold cavity. We defined the most important features for each classifier from the pressure
curve with a selective feature selection method and principal component analysis. We

Sensors 2022, 22, 2704 14 of 18

found that the feature selection method delivers better results than the principal component
analysis method. Moreover, the accuracy of classification when the features were defined
with the principal component analysis was sometimes worse than when the whole dataset
was used. Selective forward feature selection significantly improved the accuracy of
predicting the quality of parts.

We compared the accuracy of four different classifiers with different training data
sizes, and proved that with the same training dataset, the decision tree algorithm was the
most accurate, with a short computational time (8–10 s). The average performance of the
decision tree algorithm was more than 90% in every case, even when we used a very low
number of training data (1–3). Feature selection does not affect the accuracy of the decision
tree algorithm significantly. The second best performance was demonstrated by the linear
discriminant analysis algorithm. The naïve Bayes classifier, in the case of a higher number
of training samples, showed the same or slightly better accuracy than LDA. At the same
time, naïve Bayes did not show good results in the case of a small number of training data.
The principal component analysis method has a negative effect on the accuracy of the LDA
and the naïve Bayes algorithm. The kNN algorithm can reach the same accuracy as the
naïve Bayes classifier and is not very sensitive to the number of training data. In the case
of kNN, the feature selection method improved accuracy, while the principal component
analysis had no significant effect on it. The computational time of training and classification
for naïve Bayes algorithms was the highest out of all the examined algorithms. We proved
that it is possible to train simple classifiers with a small amount of training data and reach
a high accuracy of prediction.

Author Contributions: Conceptualization, R.D.P., D.T. and J.G.K.; methodology, R.D.P. and D.T.;
software, R.D.P.; validation, R.D.P.; investigation, R.D.P. and D.T.; writing—original draft preparation,
R.D.P. and T.A.; writing—review and editing, visualization, R.D.P. and T.A.; project administration,
D.T.; funding acquisition, J.G.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Research, Development and Innovation Office,
Hungary (2018–1.3.1-VKE-2018-00001, OTKA FK134336). The research reported in this paper and
carried out at BME has been supported by the NRDI Fund (TKP2020 NC, Grant No. BME-NC) based
on the charter of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation
and Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank ARBURG Hungária Kft. for the Arburg Allrounder
420 C 1000-290 injection molding machine and TOOL-TEMP Hungária Kft., LENZKES GmbH, and
PIOVAN Hungary Kft. for the additional equipment.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2022, 22, 2704 15 of 18

Appendix A

Table A1. Results of the Kruskal–Wallis test and the Dunn–Šidak post hoc test for the kNN algorithm (α = 0.05).

Type of Test Test Statistic
Training Sample Size/Class

1 2 3 4 5 6 7 8 9 10

Kruskal–
Wallis

test

χ2 32.44 65.83 98.75 98.21 122.28 134.22 119.04 119.25 131.83 142.37
p 9.03 × 10−8 5.07 × 10−15 3.60 × 10−22 4.73 × 10−22 2.80 × 10−27 7.14 × 10−30 1.41 × 10−26 1.27 × 10−26 2.37 × 10−29 1.21 × 10−31

effect size 0.108 0.220 0.330 0.328 0.409 0.449 0.398 0.399 0.441 0.476

Dunn–Šidák
test

p*(CD-MD) 1.00 1.00 1.00 1.00 1.00 0.96 0.99 0.98 0.96 0.90
p*(CD-SD) 2.27 × 10−6 7.47 × 10−12 0 0 0 0 0 0 0 0
p*(MD-SD) 2.62 × 10−6 5.40 × 10−12 0 0 0 0 0 0 0 0

Table A2. Results of Kruskal–Wallis test and Dunn–Šidak post hoc test for naïve Bayes algorithm (α = 0.05).

Type of Test Test Statistic
Training Sample Size/Class

1 2 3 4 5 6 7 8 9 10

Kruskal–Wallis test
χ2 165.62 95.24 124.83 90.70 76.16 70.71 57.73 49.34 75.69 86.39
p 1.09 × 10−36 2.09 × 10−21 7.83 × 10−28 2.02 × 10−20 2.90 × 10−17 4.42 × 10−16 2.91 × 10−13 1.93 × 10−11 3.67 × 10−17 1.74 × 10−19

effect size 0.554 0.319 0.417 0.303 0.255 0.236 0.193 0.165 0.253 0.289

Dunn–Šidák test
p*(CD-MD) 1.00 0 0 0 0 0 0 0 0 0
p*(CD-SD) 0 7.51 × 10−2 0.02 0.61 0.12 0.62 0.99 0.33 0.03 0
p*(MD-SD) 0 0 0 0 0 0 0 0 0 0

Table A3. Results of Kruskal–Wallis test and Dunn–Šidak post hoc test for decision tree algorithm (α = 0.05).

Type of Test Test Statistic
Training Sample Size/Class

1 2 3 4 5 6 7 8 9 10

Kruskal–Wallis test
χ2 159.74 143.07 172.60 131.47 151.68 147.85 160.59 170.56 158.94 170.51
p 2.06 × 10−35 8.56 × 10−32 3.31 × 10−38 2.83 × 10−29 1.16 × 10−33 7.85 × 10−33 1.34 × 10−35 9.19 × 10−38 3.07 × 10−35 9.44 × 10−38

effect size 0.534 0.478 0.577 0.440 0.507 0.494 0.537 0.570 0.532 0.570

Dunn–Šidák test
p*(CD-MD) 0 0 0 0 0 0 0 0 0 0
p*(CD-SD) 1.00 0.81 0.88 0.93 1.00 0.88 0.65 0.94 0.57 0.23
p*(MD-SD) 0 0 0 0 0 0 0 0 0 0

Sensors 2022, 22, 2704 16 of 18

Table A4. Results of Kruskal–Wallis test and Dunn–Šidak post hoc test for LDA algorithm (α = 0.05).

Type of Test Test Statistic
Training Sample Size/Class

1 2 3 4 5 6 7 8 9 10

Kruskal–Wallis test
χ2 - 109.74 179.92 164.87 194.40 206.53 192.09 202.24 189.00 183.66
p - 1.48 × 10−24 8.55 × 10−40 1.58 × 10−36 6.13 × 10−43 1.42 × 10−45 1.94 × 10−42 1.21 × 10−44 9.12 × 10−42 1.31 × 10−40

effect size - 0.367 0.602 0.551 0.650 0.691 0.642 0.676 0.632 0.614

Dunn–Šidák test
p*(CD-MD) - 9.76 × 10−13 8.63 × 10−14 1.45 × 10−13 4.15 × 10−11 1.65 × 10−10 2.19 × 10−7 5.72 × 10−7 5.43 × 10−4 4.18 × 10−4

p*(CD-SD) - 0.01 2.41 × 10−8 4.96 × 10−7 2.08 × 10−12 1.90 × 10−14 3.33 × 10−16 0 0 0
p*(MD-SD) - 0 0 0 0 0 0 0 0 0

Table A5. Result of Kruskal–Wallis test and Dunn–Šidak tests for comparison of algorithms (kNN-k-nearest neighbor, NB-naïve Bayes, DT-decision tree, LDA-linear
discriminant analysis).

Type of Test Test Statistic
Training Sample Size/Class

1 2 3 4 5 6 7 8 9 10

Kruskal–Wallis test
χ2 - 79.12 91.27 58.74 63.20 70.31 72.70 66.72 34.30 39.56
p - 4.74 × 10−17 1.17 × 10−19 1.09 × 10−12 1.22 × 10−13 3.66 × 10−15 1.13 × 10−15 2.15 × 10−14 1.72 × 10−7 1.32 × 10−8

effect size - 0.799 0.922 0.593 0.638 0.710 0.734 0.674 0.346 0.40

Dunn–Šidák test

p*(kNN-NB) - 4.68 × 10−5 5.87 × 10−4 0.04 0.83 0.79 0.15 0.95 1.00 1.00
p*(kNN-DT) - 1.12 × 10−4 9.53 × 10−4 0.02 1.82 × 10−5 1.45 × 10−6 5.14 × 10-6 2.41 × 10−7 6.05 × 10−6 1.15 × 10−7

p*(kNN-LDA) - 0.77 2.44 × 10−5 1.10 × 10−4 7.06 × 10−7 4.83 × 10−7 4.13 × 10−5 1.56 × 10−6 0.28 0.15
p*(NB-DT) - 0 1.01 × 10−13 7.69 × 10−8 4.07 × 10−8 1.16 × 10−9 5.89 × 10−12 1.47 × 10−9 1.18 × 10−6 9.42 × 10−7

p*(NB-LDA) - 7.04 × 10−8 0 1.64 × 10−11 7.89 × 10−10 3.05 × 10−10 1.18 × 10−10 1.26 × 10−8 0.14 0.328
p*(DT-LDA) - 0 1 1 1 1 1 1 0 0

Sensors 2022, 22, 2704 17 of 18

References
1. Schubert, M.; Perfetto, S.; Dafnis, A.; Mayer, D.; Atzrodt, H.; Schröder, K.-U. Multifunctional load carrying lightweight structures

for space design. In Deutscher Luft und Raumfahrtkongress; Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth e.V.:
Bonn, Germany, 2017.

2. Rojko, A. Industry 4.0 concept: Background and overview. Int. J. Interact. Mob. Technol. 2017, 11, 77–90. [CrossRef]
3. Rosz, R.; Ando, M. Collaborative Systems, Operation and Task of the Manufacturing Execution Systems in the 21st Century

Industry. Period. Polytech. Mech. Eng. 2020, 64, 51–66. [CrossRef]
4. Ageyeva, T.; Horváth, S.; Kovács, J.G. In-mold sensors for injection molding: On the way to industry 4.0. Sensors 2019, 19, 3551.

[CrossRef]
5. Rousopoulou, V.; Nizamis, A.; Vafeiadis, T.; Ioannidis, D.; Tzovaras, D. Predictive maintenance for injection molding machines

enabled by cognitive analytics for industry 4.0. Front. Artif. Intell. 2020, 3, 578152. [CrossRef]
6. Bertolini, M.; Mezzogori, D.; Neroni, M.; Zammori, F. Machine learning for industrial applications: A comprehensive literature

review. Expert Syst. Appl. 2021, 175, 114820. [CrossRef]
7. Struchtrup, A.S.; Kvaktun, D.; Schiffers, R. A holistic approach to part quality prediction in injection molding based on machine

learning. In Advances in Polymer Processing 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 137–149. [CrossRef]
8. Shalev-Shwartz, S.; Ben-David, S. A formal learning model. In Understanding Machine Learning: From Theory to Algorithms;

Cambridge University Press: Cambridge, UK, 2014.
9. Guo, F.; Zhou, X.; Liu, J.; Zhang, Y.; Li, D.; Zhou, H. A reinforcement learning decision model for online process parameters

optimization from offline data in injection molding. Appl. Soft Comput. J. 2019, 85, 105828. [CrossRef]
10. Jagatheesaperumal, S.K.; Rahouti, M.; Ahmad, K.; Al-Fuqaha, A.; Guizani, M. The duo of artificial intelligence and big data for

industry 4.0: Review of applications, techniques, challenges, and future research directions. IEEE Internet Things J. 2020, 1–32.
11. Wu, H.; Zhao, G.; Wang, J.; Wang, G.; Zhang, M. A kind of special weld lines with high specific strength and elongation obtained

by core-back chemical foam injection molding. Express Polym. Lett. 2019, 13, 1041–1056. [CrossRef]
12. Hopmann, C.; Borchmann, N.; Spekowius, M.; Weber, M.; Schöngart, M. Simulation of shrinkage and warpage ofsemi-crystalline

thermoplastics. AIP Conf. Proc. 2015, 1664, 50009. [CrossRef]
13. Tsai, K.M.; Hsieh, C.-Y.; Lo, W.-C. A study of the effects of process parameters for injection molding on surface quality of optical

lenses. J. Mater. Process. Technol. 2009, 209, 3469–3477. [CrossRef]
14. Yang, C.; Su, L.; Huang, C.; Huang, H.X.; Castro, J.M.; Yi, A.Y. Effect of packing pressure on refractive index variation in injection

molding of precision plastic optical lens. Adv. Polym. Technol. 2011, 30, 51–61. [CrossRef]
15. Huang, M.-S. A novel clamping force searching method based on sensing tie-bar elongation for injection molding. Int. J. Heat

Mass Transf. 2017, 109, 223–230. [CrossRef]
16. Chen, J.-Y.; Liu, C.-Y.; Huang, M.-S. Enhancement of injection molding consistency by adjusting velocity/pressure switching time

based on clamping force. Int. Polym. Process. 2019, 34, 564–572. [CrossRef]
17. Griffiths, C.A.; Dimov, S.S.; Scholz, S.; Hirshy, H.; Tosello, G. Process factors influence on cavity pressure behavior in microinjection

moulding. J. Manuf. Sci. Eng. 2011, 133, 031007. [CrossRef]
18. Zhou, X.; Zhang, Y.; Mao, T.; Zhou, H. Monitoring and dynamic control of quality stability for injection molding process. J. Mater.

Process. Technol. 2017, 249, 358–366. [CrossRef]
19. Park, H.; Rhee, B.; Cha, B.S. Variable-runner system for family mold filling balance. Diffus. Defect Data Part B Solid State Phenom.

2006, 116–117, 96–101. [CrossRef]
20. Suthaharan, S. Machine learning models and algorithms for big data classification: Thinking with examples for effective learning.

Integr. Ser. Inf. Syst. 2016, 36, 378.
21. Selvaraj, S.K.; Raj, A.; Mahadevan, R.R.; Chadha, U.; Paramasivam, V. A review on machine learning models in injection molding

machines. Hindawi. Adv. Mater. Sci. Manuf. 2022, 28, 1949061. [CrossRef]
22. Zhao, P.; Dong, Z.; Zhang, J.; Zhang, Y.; Cao, M.; Zhu, Z.; Zhou, H.; Fu, J. Optimization of injection-molding process parameters for

weight control: Converting optimization problem to classification problem. Adv. Polym. Technol. 2020, 2020, 7654249. [CrossRef]
23. Yin, F.; Mao, H.; Hua, L.; Guo, W.; Shu, M. Back propagation neural network modeling for warpage prediction and optimization

of plastic products during injection molding. Mater. Des. 2011, 32, 1844–1850. [CrossRef]
24. Ogorodnyk, O.; Lyngstad, O.V.; Larsen, M.; Martinsen, K. Prediction of width and thickness of injection molded parts using

machine learning methods. In Proceedings of the 11 International Symposium on Environmentally Conscious Design and Inverse
Manufacturing, Yokohama, Japan, 25–27 November 2019; Kishita, Y., Matsumoto, M., Inoue, M., Fukushige, S., Eds.; Springer:
Berlin/Heidelberg, Germany, 2019.

25. Ke, K.-C.; Huang, M.-S. Quality classification of injection-molded components by using quality indices, grading, and machine
learning. Polymers 2021, 13, 353. [CrossRef]

26. Chen, J.-Y.; Tseng, C.-C.; Huang, M.-S. Quality indexes design for online monitoring polymer injection molding. Adv. Polym.
Technol. 2019, 2019, 3720127. [CrossRef]

27. Gulcur, M.; Whiteside, B. A study of micromanufacturing process fingerprints in micro0injection moulding for machine learning
and industry 4.0 applications. Int. J. Adv. Manuf. Technol. 2021, 225, 1943–1945. [CrossRef]

28. Gim, J.; Rhee, B. Novel analysis methodology of cavity pressure profiles in injection-molding processes using interpenetration of
machine learning model. Polymers 2021, 13, 3297. [CrossRef]

http://doi.org/10.3991/ijim.v11i5.7072
http://doi.org/10.3311/PPme.14413
http://doi.org/10.3390/s19163551
http://doi.org/10.3389/frai.2020.578152
http://doi.org/10.1016/j.eswa.2021.114820
http://doi.org/10.1007/978-3-662-60809-8_12
http://doi.org/10.1016/j.asoc.2019.105828
http://doi.org/10.3144/expresspolymlett.2019.91
http://doi.org/10.1063/1.4918413
http://doi.org/10.1016/j.jmatprotec.2008.08.006
http://doi.org/10.1002/adv.20211
http://doi.org/10.1016/j.ijheatmasstransfer.2017.02.004
http://doi.org/10.3139/217.3867
http://doi.org/10.1115/1.4003953
http://doi.org/10.1016/j.jmatprotec.2017.05.038
http://doi.org/10.4028/www.scientific.net/SSP.116-117.96
http://doi.org/10.1155/2022/1949061
http://doi.org/10.1155/2020/7654249
http://doi.org/10.1016/j.matdes.2010.12.022
http://doi.org/10.3390/polym13030353
http://doi.org/10.1155/2019/3720127
http://doi.org/10.1007/s00170-021-07252-7
http://doi.org/10.3390/polym13193297

Sensors 2022, 22, 2704 18 of 18

29. Wang, Q.; Zhao, X.; Zhang, J.; Zhang, P.; Wang, X.; Yang, C.; Wang, J.; Wu, Z. Research on quality characterization method of
micro-injection products based on cavity pressure. Polymers 2021, 13, 2755. [CrossRef]

30. Chen, J.-Y.; Yang, K.-J.; Huang, M.-S. Online quality monitoring of molten resin in injection molding. Int. J. Heat Mass Transf. 2018,
122, 681–693. [CrossRef]

31. Hua, J.; Xiong, Z.; Lowey, J.; Suh, E.; Dougherty, E.R. Optimal number of features as a function of sample size for various
classification rules. Bioinformatics 2005, 21, 1509–1515. [CrossRef]

32. Jain, A.K.; Waller, W.G. On the optimal number of features in the classification of multivariate Gaussian data. Pattern Recognit.
1978, 10, 365–374. [CrossRef]

33. Vapnik, V.N.; Chervonenkis, Y.A. On the uniform convergence of relative frequencies of events to their probabilities. Theory
Probab. ITS Appl. 1971, 16, 264–280.

34. Rokach, L. Genetic algorithm-based feature set partitioning for classification problems. Pattern Recognit. 2008, 41, 1676–1700.
35. Klesk, P.; Korzen, M. Sets of approximating functions with finite Vapnik-Chervonenkins dimension for nearest-neighbors

algorythms. Pattern Recognit. Lett. 2011, 32, 1882–1893. [CrossRef]
36. Kearns, M.; Ron, D. Algorithmic Stability and Sanity-Check Bounds for Leave-One-Out Cross-Validation. Neural Comput. 1999,

11, 1427–1453.
37. Berikov, V.B. An approach to the evaluation of the performance of a discrete classifier. Pattern Recognit. Lett. 2002, 3, 227–233.

[CrossRef]
38. Ke, K.-C.; Huang, M.-S. Quality prediction for injection molding by using a multilayer perceptron neutral network. Polymers 2020,

12, 1812. [CrossRef]

http://doi.org/10.3390/polym13162755
http://doi.org/10.1016/j.ijheatmasstransfer.2018.02.019
http://doi.org/10.1093/bioinformatics/bti171
http://doi.org/10.1016/0031-3203(78)90008-0
http://doi.org/10.1016/j.patrec.2011.07.012
http://doi.org/10.1016/S0167-8655(01)00119-2
http://doi.org/10.3390/polym12081812

	Introduction
	Materials and Methods
	Experimental Setup
	Methods
	Preparation of Data
	Random Sampling
	Formulating of Feature Datasets
	Classification Algorithms
	Method of Comparison of Classifiers

	Results
	The KNN Classifier
	Naïve Bayes Classifier
	Decision Tree Classifier
	Discriminant Analysis Classifier
	Comparison of the Most Accurate Classifiers

	Conclusions
	Appendix A
	References

