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Abstract

In this study, we modeled the deformation and failure behavior of different glass woven fabrics under uni-
axial tension using the Fibre Bundle Cells-modeling method. The difference between the analytical, phenom-
enological model curve and the mean curve calculated from the measurement results was classified by the 
relative mean squared error (RMSE), which is closely related to the coefficient of determination. This value 
was less than 3.6% in all the examined cases, which indicated good modeling.

Keywords: FBC modeling, glass woven, tensile test.

1. Introduction

Nowadays, the application fields of polymer 
composites are constantly expanding, and in ad-
dition to fiber-reinforced polymer composites  [1] 
research on nano- [2], and biocomposites [3], as 
well as on the destruction of composite structures 
[4], is gaining prominence. The high use of poly-
mer composites is well illustrated by the fact that 
more than 50% of the raw materials used in air-
craft manufacturing are polymer composites (ex-
cluding engines) [5]. 

A significant part of these are fabric-reinforced 
composites, hence there is a huge demand for 
models which can properly describe the mechan-
ical and failure behavior of fabrics and fabric-re-
inforced composite materials and products al-
ready in the design phase. However, this requires 
fabric models that allow a sufficiently accurate 
description of the mechanical behavior of the 
fabrics. Continuous or discrete element models 
are basically used to model the behavior of wo-
ven fabrics.

1.1. Continuum models

Most woven fabric models are continuum mod-
els that treat fabric as a continuum material. Tra-
ditionally, layer models of composite mechanics 
are used to model fabrics. In order to describe the 
fabric-reinforced composites more accurately, 
several analytical and finite element 2D and 3D 
models have been developed that already take into 
account the fibrous structure of the fabrics and 
the structure resulting from the weaving technol-
ogy. Examples are the mosaic model developed by 
Ishikawa [6], and the fiber undulation model [7]. 
The mosaic model first divides the fabric into two 
layers perpendicular to each other and then sep-
arates the warp and weft yarns within the layers. 
The fiber undulation model takes into account the 
continuity, the unevenness of the yarns and the 
intersection of warp and weft yarns as well. It de-
scribes the fabric with a repeating unit consisting 
of three parts: a two-layer element where the two 
layers are oriented perpendicularly (which is also 
used at the yarn intersections of the mosaic mod-
el), a corrugated element (which describes the 
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actual intersection of warp and weft yarns), and 
an element assuming pure matrix material. Later, 
2D and 3D modeling have developed from these 
basic models, and the models applied today can 
be used to describe time- and temperature-depen-
dent behaviors as well [8]. 

1.2. Discrete element models

Discrete element models define fabric as a net-
work of a finite number of nodes (typically mass 
points), and nodes are usually connected by me-
chanical elements with specific properties (e.g., 
springs, dashpots, etc.). One such model is based 
on a network of springs and dashpots connected 
in parallel by gräff and Kuzmina [9]. In the mod-
el, discrete points of mass are connected by differ-
ent springs (structural, bending and shear). How-
ever, these are not simple springs, but essentially 
Kelvin-Voigt elements (since the spring branches 
also contain dashpots). The model considers the 
springs to have a linear characteristic and the 
dashpots to be proportional to the speed, while 
not taking into account the friction between the 
yarns.

Another discrete element model suitable for de-
scribing woven fabrics is the Vas’s fiber bundle 
cell model [10, 11]. The Fiber Bundle Cell-based 
modeling method offers a set of model elements 
that can be used to build a system for describing 
the behavior of fibrous structures and composites 
reinforced with fibrous structures. The Fiber Bun-
dle Cell model is a discrete element model that 
takes into account that the fabric used as a com-
posite reinforcement is not a continuum struc-
ture. The model also considers that the yarns (as 
fibers) that constitute the fabric form fiber bun-
dles (fiber bundle cells) at the microscopic level. 
When describing fabrics, the model considers the 
warp and weft yarns of the fabric as fiber bun-
dles. At the macroscopic level, it describes woven 
fabrics as a concentrated parameter network of 
mechanical elements (fiber bundle cells) with 
discrete, statistical, linear, or nonlinear charac-
teristics. The model assumes that the fibers in a 
partially ordered fiber bundle of the same type of 
fibers can be classified based on their initial state 
and environmental properties (gripping condi-
tions) and can be shifted along with their envi-
ronment (or into a similar environment). Fibers 
in the same classes form a sub-fiber bundle (i.e. a 
fiber bundle cell). The system of fiber bundle cells 
produced in this way, parallel to the direction of 
stretching, models the structure and strength of 
the original bundle.

2. The applied model

In the model, the real fabric of warp and weft 
yarns was replaced by a model with only warp 
yarns. This was possible because during the warp 
direction strip tensile tests, the weft yarns essen-
tially do not take up the load, only modify the 
spatial arrangement and deformation behavior 
of the warp yarns. Therefore, a model bundle is 
required whose elements are virtual warp yarns 
that also include the effect of weft yarns. For 0 ° 
specimens, “strong” model yarns are obtained. 
This step can also be done for 45 ° specimens, but 
in this case there is no yarn in the direction of the 
load. Therefore, as a result of waviness and obliq-
uity modifying the deformation behavior, “weak” 
(warp) model yarns are obtained.

2.1. Modeling with one nonlinear E-bundle

A nonlinear E-bundle from the model set was 
used to model the tensile tests on the 0 ° fabric 
bands. The E-bundle is a well-arranged, elastic, 
breaking bundle with independent fibers, ideal 
grips at both ends (i.e., the fibers do not slip out of 
the grip and do not break in the grip), the fibers 
are parallel to each other and to the direction 
of pulling and are not pre-stressed (i.e. they are 
stress-free but not loose). In this case, the tensile 
characteristic (f(ε) (N∙g-1∙m2) is described by Equa-
tion (1), where ε denotes the relative elongation,  
a > 0 (N∙g-1∙m2), b > 0 (N∙g-1∙m2) are the parameters 
representing the influence of the waviness of the 
yarn and the wrinkling of the woven strip on the 
tensile characteristic, and c > 0 (N∙g-1∙m2) is the as-
ymptotic tensile stiffness:

f (ε) = c ε + a (1 – e-bε) (1)

It can be seen that for a = 0 and/or b = 0, Equation 
(1) also includes the linear case. However, Equa-
tion (1), like the tensile characteristics in general, 
only describes the intact operation, which can be 
determined for most mechanical models. Fiber 
bundle cell-based modeling, on the other hand, 
assumes that there are defects in the test mate-
rial. These are considered with a so-called reli-
ability function (g(ε)) (2), where ε is the specific 
elongation of the model yarn, εS is the specific 
elongation at break of the model yarn, and  is 
the distribution function of the specific elonga-
tion at break:

g (ε) = (1 – (ε)) (2)

In this case, the reliability function is a com-
plementary distribution function of the specific 
elongation at break. The reliability function gives 
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the ratio of the still operating, i.e. intact fibers at 
the given load level (ε). In the present case, we 
assumed the specific elongation at break (εS) of 
the model yarns to be normally distributed. Using 
equations (1) and (2), the tensile stress σ(ε) can be 
produced as the product of the tensile character-
istic f(ε) and the reliability function g(ε) (3), which 
significantly reduces the operation of the calcula-
tions for more complex calculations:

σ(ε) = f(ε) ∙ g(ε) (3)

2.2. Modeling with two nonlinear E-bundles 
connected in parallel

Two parallel-connected nonlinear E-bundles 
were used in each case to model the mean curves 
describing the deformation and failure behavior 
of 45 ° angled woven strips under uniaxial ten-
sion. The use of the two bundles was necessary 
due to the shape of the curves, as a very inaccu-
rate result would have been obtained with a sin-
gle bundle model. The two-bundle case is very 
similar to the single bundle case, however, the 
tensile characteristic is described not by Equa-
tion (1) but by Equation (4), where p1 and p2 are 
weights for which it is true that p1 + p2 = 1:

f(ε) = p1 ∙ f1(ε) + p2 ∙ f2(ε)   (4)
where the characteristic of each bundle is (5):

 (5)

where i ∈ {1, 2}, } and d is an offset that is zero 
in one or both cases. It can be seen that Equation 
(5) also includes the single bundle case, where 
d = 0. In the two-bundle case, for example, for one 
bundle d > 0, and for the other d = 0. Thus, in the 
two-bundle case, the tensile characteristic has 
four parameters. In this case the specific tensile 
stress also can be obtained as the weighted sum 
of the product of the tensile characteristic and the 
reliability function on the two nonlinear bundles 
E (E1 and E2) :

 (6)

3. Materials and methods 

In the research, UTE195P from the manufactur-
er Unique Textiles (area density: 195 g/m2, weave: 
plain) and UTE195T (area density: 195 g/m2, 
weave: twill) glass fabrics were tested. Warp-di-
rectional and ± 45° samples were prepared from 
the woven fabrics, with a width and length of 50 
and 200 mm, respectively. Uniaxial tensile testing 

of the samples was performed on a universal ten-
sile machine (manufacturer: Zwick, type: Z005). 
The grip length was 100 mm and the test speed 
was 25 mm/min, during the test, the force and 
the crosshead displacement were recorded. FBC 
modeling was performed based on tensile tests. 
The five force-crosshead displacement curves 
were first parameterized to the specific stress (ra-
tio of the measured force and the area density of 
the specimen) – specific elongation (ratio of the 
actual and initial clamping length of the speci-
men) curve, and then determined in each case 
by the so-called smoothed mean curve (this was 
obtained by moving average smoothing, where 
the width of the smoothing window was ε = 0.01). 
The resulting mean curves were used for model-
ing. Using Equations (1) - (6), we performed the 
FBC modeling for the total specific stress -specific 
elongation curve. The model parameters (ai, bi, ci, 
di, and pi) in Equations (1) and (5) were optimized 
by an iteration method, so that the difference 
between the model curve and the mean curve 
should be optimized to get a minimum rMsE val-
ue (Eq. 7), which is closely related to the coeffi-
cient of determination:

 (7)

where n is the number of measuring points,  
σmeasured  is the specific stress calculated from the 
measured force values, and εi is the elongation 
value corresponding to the stress measured at the 
given point.

4. Results and discussion  

The specific stress (σ)-specific elongation (ε) 
curves calculated from the tensile tests for the 
tested woven fabrics are shown in Figures 
1-4. In the figures, the dashed line indicates the 
smoothed mean curve required for the modeling.

The curves show that there is no significant 
difference between the force maxima of the test 
specimens of the same size but with different 
weaves in the warp direction. However, in the 
case of ±45 degrees, there is an order of magni-
tude difference. since there is no yarn in the di-
rection of the load in this test, the maximum force 
is determined by the weave of the fabrics, since 
all their other parameters are the same. These 
measurement results also prove that twill weav-
ing results in a much looser structure, which also 
implies that it is much easier to transform into 
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complex 3D shapes. Of course, this difference also 
occurs in the mechanical properties when used 
as an embedded reinforcement. The relationship 
between the smoothed mean curves determined 
from each measurement curve and the modeled 
curves is shown in  Figures 5–8. 

AThe quantified results of the modeling are 
shown in Table 1. In the table, parameters a, b, 
c, d are the variables in Equations (1) and (5), and 
E(εS), D(εS) and V(εS) are the expected value, stan-
dard deviation, and relative standard deviation, 
respectively. To characterize the relationship be-
tween the model curves and the smoothed mean 
curves, i.e. to determine the goodness of the mod-
eling, we used the relative mean squared error 
(rMsE). 

It can be seen from Table 1. that the relative 
mean squared error between the smoothed mean 

Figure 1. Warp directional tensile curves and the 
smoothed mean curve (dashed line) of plain 
fabric.

Figure 2. Warp directional tensile curves and the 
smoothed mean curve (dashed line) of twill 
fabric.

Figure 3. ±45 ° directional tensile curves and the 
smoothed mean curve (dashed line) of plain 
fabric.

Figure 4. ±45 ° directional tensile curves and the 
smoothed mean curve (dashed line) of twill 
fabric.

curve and the curve calculated by the Fiber Bun-
dle Cell theory is less than 3.6% in every case. 
Based on these results, the modeling can be con-
sidered exceptionally good, as the modeled curve 
approximates the smoothed mean curve well 
enough.

5. Conclusions

Using the Fiber Bundle Cell theory, we created 
a discrete element, analytical, phenomenolog-
ical model suitable for the mechanical model-
ing of the deformation and failure behavior of 
the investigated composite reinforcing fabrics 
during uniaxial tensile testing. The relative mean 
squared error between the smoothed mean curve 
determined from 5 tensile tests per material and 
the curve calculated from the model was less 
than 3.6% in each case. 
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Figure 6. Warp directional mean curve and model 
curve of twill fabric obtained from tensile 
tests.

Figure 7. ±45 ° directional mean curve and model 
curve of plain fabric obtained from tensile 
tests.

Figure 8. ±45 ° directional mean curve and model 
curve of twill fabric obtained from tensile 
tests.

Table 1. Parameters characterizing the modeling of woven fabric strips

MODEL PARAMETERS

Sample and grip
Model- 

structure
Tensile characteristics - intact  

functioning
Failure Fitting

Sam-
ple

Grip 
distance 

(mm)

Azi-
muth 
angle  

(°)

Com-
ponent  
weight,  

p 

a  
(N∙g-1∙m2)

b  
(N∙g-1∙m2)

c  
(N∙g-1∙m2)

d E(εS) D(εS) 
V(εS)  
(%)

RMSE 
(%)

Plain 100 0 1.00 -220 1.5 330 0 0.09 0.008 9.0 3.05

Twill 100 0 1.00 -267 1.5 400 0 0.08 0.006 7.1 3.49

Plain 100 45
0.40 0.3 2.0 0.08 0 0.44 0.033 7.5

2.10
0.60 -8.3 0.1 0.92 12 0.33 0.033 10.0

Twill 100 45
0.12 0.3 0.5 0.01 0 0.34 0.063 18.5

3.59
0.88 -0.6 0.1 0.06 6 0.29 0.063 21.7

Figure 5. Warp directional mean curve and model 
curve of plain fabric obtained from tensile 
tests.
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Based on the results, the modeling method is 
proven to be exceptionally good. It can be stated 
that the FBC modeling is a fast, simple method 
with a small computing capacity, which is suit-
able for describing the deformation and failure 
behavior of fabrics under uniaxial tension.
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