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Abstract: Austenitic stainless steels have low corrosion resistance in applications where strong acids 

and vapours attack the surface, typically in food and chemical industries. This drawback can be 

improved by surface treatments. Salt bath, gaseous or plasma-based surface treatments are a diffusion 

process for improving the hardness of the surface layer on stainless steels without significantly 

affecting their corrosion resistance. Low temperature carburising process can form crystal lattice 

distorting diffusion zone or/and compound phases. This research based on an industrial problem where 

corrosion patches could be formed on the surface after the using. Surface treatments were performed 

by derouging and passivating to clean the surface. Optical microscope and Vickers microhardness 

testing were used for the characterization of the surface and potentiodynamic tests were performed to 

determine the corrosion rate. The patches were formed only on the surface, it cannot affect the cross-

section of the layer. The corrosion rates of the original and the derouged samples were similar.  
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Introduction  

Stainless steel is a widely used material in application where the corrosion resistance is 

important. The presence of alloying element Cr is forming a stable passive layer on the 

surface which protects the steel [1]. The main corrosion form of the austenitic stainless steel is 

pitting [2,3]. The initial step of the pitting is a local breakdown of the passivation oxide layer 

[4,5]. To avoid this phenomenon and improve the wear resistance, low temperature 

carburising (below 500°C) could be applied.  

Kolsterising is a process that modifies the properties of the base material in a few ten of m 

layer. It hardens the surface through the diffusion of interstitial carbon without the formation 

of carbides [6]. This supersaturated austenite layer also called as S-phase [7]. The process 

-developed by Kolster- which is a proprietary technology of Bodycote Heat Treatment. 

Difference values can be found in the publications about the carbon content in the formed 

layer. Farrell et al. measured 3-4.5 w% [8], Gümpel and Wagner measured 12 at% carbon 

content by GDOES (glow discharge optical emission spectroscopy) [9], but Faccoli et al. 

mentioned the process results 6-7 w% carbon content increasing [10].  

Ray and Jacquot said the hardness could increase above to 1000HV that is more than 4 times 

than the hardness of the base material. Consequently, surface roughness of treated parts 

remained low during the wear tests while this property of the untreated samples increased 

[11]. Farrell et al. also mentioned that the corrosion resistance of the kolsterised layer in 

various acid is greater than the untreated austenite. If inclusions (e.g. MnS) and -ferrite were 

contained in the layer, these parts reduced the corrosion resistance for those microstructural 

features and it could be a potential pitting corrosion sites [8]. Buhagiar confirms that S-phase 

layers which are precipitate-free showed an improved pitting corrosion resistance compared to 

the untreated material [12]. 

The aim of this research to investigate the surface corrosion properties of a kolsterised 

industrial part after the operational.  

Materials and methods  

AISI 316L type austenitic stainless steel was used for the experiments. The chemical 

composition of the base material is (in wt.%.): Cr (16.7), Ni (9.84), Mo (1.95), C (0.02), and 

Fe for balance. The low temperature carburising was performed by the industrial provider of 

the kolsterising treatment. The original part can be seen in Fig 1.  

 
Figure 1. The original part 

For the microstructural investigations Olympus PMG 3 optical microscope was used. The 

surface hardness was measured by hardness tester (Buehler IndentaMet 1105). The 
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morphology of the corroded surface of the samples was observed by Olympus SZX16 

stereomicroscope and Zeiss EVO MA10 scanning electron microscope (SEM). The corrosion 

resistance of the samples was evaluated by measuring polarization curves in 1M H3PO4 

solution using ZAHNES IM6e electrochemical working station. The cell of the specimen was 

set-up as the working electrode, a Hg2Cl2/KCltel calomel electrode as the reference electrode 

and a platinum was used as the counter electrode. 

Results and discussion 

Characterization of the corroded surface 

An operational test was made by the industrial provider who gave the samples for the 

investigation. Corrosion patches were formed on the surface of some parts which is seen ing 

Fig 2.  

 

Figure 2. Corrosion patches before the operational 

To choose the right solution of the problem these patches were examined by using scanning 

electron microscope and energy dispersive spectrometry (EDS) analysis (Fig 3). The main 

elements in the corrosion product are oxygen (O), iron (Fe), the chromium (Cr) and nickel 

(Ni) content were much lower than that of the base material these are the components of the 

rust. The significant amount of elements such as Na, Al, K and especially the chlorine, show 

that the contamination also had to contain some strong corrosive agents. 

 
Figure 3. Analysed points of the corroded part of the sample 

These discolorations of the stainless steel and the iron oxide content on the surface is the 

typical form of the rouge. Rouge formation is a steady chemical process that is underway in 

all metallic, mostly piping systems in contact with water and all stainless steels corrode over 

time as minor ingredients are lost and electrochemical potentials rise [13]. The patches could 

remove by derouging. It is designed to remove the oxides of iron and/or other contaminants 
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using acidic solutions [14]. Usually, it follows with a passivation treatment to establish the 

best passive film and provide for an improved corrosion resistant surface.  

Microstructure and hardness 

The microstructure of the substrate and the modified surface layer are presented in Fig 4. The 

kolsterised layer was homogeneous along the cross-section which approximately was 30 m. 

The base hardness of the substrate was 250 HV0.01 while the layer was 700 HV0.01. It was a 

significant increase in hardness which can improve the wear resistance of the surface. As it is 

seen, the rouging did not attack the cross-section of the layer.  

 

Figure 4. Cross-section optical microscopic images of the kolsterised layer 

Corrosion behaviour 

Before the corrosion test, derouging was performed one of the samples. Fig 5. shows the 

polarization curves after different times. The calculated corrosion rates [15,16] are listed in 

Table 1. 

Table 1. Corrosion rate parameters of the measured samples 
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-0.455 -2.36 0.021 -0.21 -2.31 0.021 

-0.455 -2.12 0.019 -0.18 -2.43 0.022 

-0.438 -1.95 0.018 -0.17 -2.6 0.022 

-0.425 -2.04 0.018 -0.19 -2.54 0.023 

Based on the calculated corrosion rates, both samples have a good corrosion resistance. 

Neither the corrosion potential, nor the current density of the samples considerably changed. 

As it is seen, the corrosion rates were slightly increased after the derouging, but the values 

were similar during the corrosion test. In contrast, the corrosion rate of the original sample 

was decreased. The last step of the derouging process is a passivation. The original part was 

not passivated, so during the corrosion test a passive film can be formed which can be caused 

the decreasing of the corrosion rate.  As it is seen in Fig 6., changes cannot be observed on the 

surface before and after the corrosion test.  
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Figure 5. Polarization curves of the a) original b) derouged samples 

 

Figure 6. SEM images of the original sample a) before the corrosion b) after the 

corrosion test and the derouged sample c) before the corrosion d) after the 

corrosion test 
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Conclusion 

The kolsterising is an effective surface treatment to improve the hardness of the austenitic 

stainless steel. The corrosion patches which contains mostly iron-oxide could be removed by 

derouging. After the process the derouged and the original parts have similar corrosion rate. 

The corrosion resistance was not declined due to the kolsterising, but furthermore the effect of 

the improving have to be investigated.   
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